View clinical trials related to Brain Neoplasms.
Filter by:This trial looks to study the safety and feasibility of using oxygen-enhanced molecular MRI to understand how cancer cells use oxygen differently than normal cells. Cancer cells tend to utilize (or not utilize) oxygen differently than normal cells. By using the oxygen-enhanced molecular MRI, researchers will be able to create spatial "maps" depicting areas of abnormal oxygen utilization unique to cancer. This type of information may be useful for diagnosing new cancers, understanding various "subtypes" of cancer that might utilize oxygen differently, or this information may be useful for evaluating new drugs that impact cancer metabolism.
The purpose of this phase 2 study is to assess the feasibility and efficacy of neoadjuvant immunotherapy in patients with previously untreated, surgically-resectable, solid tumor brain metastases. The primary objectives of this study are to 1) assess the feasibility of neoadjuvant ipilimumab and nivolumab treatment before surgery and stereotactic radiosurgery (SRS) in patients with solid tumor brain metastases as measured by the proportion of patients who have their surgery delayed or surgery never occurs, and 2) demonstrate that neoadjuvant immunotherapy will increase proliferation of circulating T-cells compared to baseline measurements. Exploratory objectives include describing patient progression free survival and overall survival, time to local and distant intracranial progression, and the rate of radiation necrosis. The rate of radionecrosis will also be explored, as immune expression profiles.
This pilot study is a randomized, open-label, 2-arm active-controlled phase II clinical trial conducted at a single study site (UAMS). Subjects will be randomized to one of the 2 treatment arms and stratified by size of index lesion and number of brain metastases. The investigators will prospectively compare preoperative (neoadjuvant) SRS/SRT to postoperative (adjuvant) SRS/SRT in patients undergoing surgical resection for brain metastases. The investigators hypothesize that neoadjuvant SRS/SRT prior to surgical resection of brain metastases will result in improved freedom from Central Nervous System (CNS) events when compared to adjuvant SRS/SRT after surgical resection.
This research study is evaluating the safety, tolerability and preliminary efficacy of the drugs marizomib and panobinostat in pediatric patients with diffuse intrinsic pontine glioma (DIPG). The names of the study drugs involved in this study are: - Marizomib - Panobinostat
This is an open-label, historically controlled pilot study investigating the immune effect of Laser Interstitial ThermotHerapy (LITT)+ pembrolizumab in adult patients with a primary cancer approved by the FDA for treatment with an immune-checkpoint inhibitor who have recurrent brain metastasis after prior stereotactic radiosurgery (SRS).
This study evaluates the clinical impact of AGuIX® nanoparticles in combination with Fractionated Stereotactic Radiation in oligo brain metastases.
The primary purpose of this study is to establish a maximum tolerated dose (MTD) through a dose-escalation trial using intraoperative radiotherapy (IORT) following neurosurgical resection for large brain metastases, and to determine the progression-free survival rate as in the recurrence rate of treated brain metastasis.
This is a multicenter, randomized open-label Phase 2 study to assess the safety, efficacy and pharmacokinetic (PK) of 2 dosing regimens of encorafenib + binimetinib combination in patients with BRAFV600-mutant melanoma with brain metastasis. Approximately 100 patients will be enrolled, including 9 patients in a Safety Lead-in of the high-dose treatment arm. After a Screening Period, treatment will be administered in 28-day cycles and will continue until disease progression, unacceptable toxicity, withdrawal of consent, start of subsequent anticancer therapy, death.
This phase II study will evaluate the safety of combining intermediate frequency electric field (TT Field) with immunotherapy in melanoma patients with brain metastasis. The data of this study will also inform whether this combination will offer advantage in progression free survival (PFS) and overall survival.
Brain metastases (BM) are the most prevalent tumors of the central nervous system (CNS), with a ratio of 10: 1 in relation to primary tumors. In prospective studies, whole-brain radiotherapy (WBRT) reduced the risk of local recurrence after resection of brain metastases from 46-59% to 10-28%. Furthermore, WBRT reduces the incidence of new metastases and death from disease, but no apparent improvement in overall survival (OS). Due to the potential neurocognitive effects associated with WBRT compared to isolated focal approach, several authors have suggested delaying WBRT and perform focal adjuvant RT after resection of isolated BM. In this context, intraoperative radiotherapy (IORT) in the cavity after resection of BM may be an appealing option. The primary objectives of this study are to evaluate local control (LC) and the control of brain disease (LC associated with the absence of new distant BM) after IORT for one completely resected supratentorial BM in the presence of up to 10 lesions suggestive of BM.