View clinical trials related to Brain Neoplasms.
Filter by:The goal of this clinical trial is to learn about in patients with supratentorial brain tumours. The main questions it aims to answer is: Can short-term preoperative walking exercise protect cognitive function in the short term after craniotomy in patients with supratentorial brain tumor and reduce the incidence of surgery-related complications? Participants will be asked to receive general care and regular walking exercises prior to surgery. Researchers will compare patients who receive only general care before surgery to see if preoperative walking exercise has an effect on postoperative prognosis.
The research aims to establish a big database of multiple kinds of brain tissues and prove the relevance of human brain tissue models and hiPSCs-derived organoid models.
The purpose of this study is to test WSD0628 in combination with radiation therapy for recurrent brain tumors.
This pilot study investigates whether advanced diffusion-weighted MRI (ADW-MRI) can differentiate between true tumor progression (TP) and a pseudoprogression (PsP) in patients with glioblastoma (GBM) or brain metastases.
A single-center, open-label, non-randomized phase I/II study to evaluate the efficacy, safety and tolerance of crizanlizumab monotherapy and in combination with nivolumab in patients with advanced glioblastoma (GB) who exhausted standard of care (SOC) therapy, patients with metastatic brain melanoma (MBM) and patients with newly diagnosed unmethylated GB. Subjects will be screened for up to 28 days prior to treatment initiation. Eligible subjects will be allocated to one of 3 cohorts: Cohort 1: Patients with metastatic melanoma with primarily diagnosed or newly progressing brain metastases who failed immunotherapy. Cohort 2: Patients with recurrent or progressing GB following primary radiation therapy and temozolomide. Patients may have failed up to 2 prior systemic treatment lines (including temozolomide as adjuvant therapy) and are candidates for further treatment. Cohort 3: Patients with newly diagnosed GB who were evaluated for methylguanine-DNA methyltransferase(MGMT) methylation status and have un-methylated MGMT promotor-therefore, they are not candidates for maintenance temozolomide therapy.
This clinical trial evaluates the feasibility of performing oxygen-enhanced magnetic resonance imaging (MRI) to generate hypoxia maps in patients with intracranial tumors. Decreased levels of oxygen (hypoxia) is a hallmark of malignant brain tumors. Chronic hypoxia is a stimulator of blood vessel formation, which is required for tumor growth and spread. Hypoxia also limits the effectiveness of radiation and chemotherapy. MRI is an imaging technique that uses radiofrequency waves and a strong magnetic field rather than x-rays to provide detailed pictures of internal organs and tissues. The administration of inhaled oxygen allows for an increased MRI signal effect size. Oxygen-enhanced MRI may be a non-invasive method that can physiologically estimate tissue hypoxia. With a better understanding of the extent of tumor hypoxia, more effective and patient-specific therapies could be devised to halt malignant tumor growth.
This study aims to evaluate feasibility of a double-blind randomized controlled trial for levetiracetam prophylaxis for prevention of seizure in the perioperative phase of brain tumor resection.
Overall Design: This is a phase I, open-label, multicenter clinical study to evaluate the safety, tolerability, pharmacokinetics, and preliminary anti-cancer efficacy of ABM-1310 in patients with BRAF V600-mutant relapsed and drug resistant primary malignant brain tumors. The study including four periods of screening (28 days), treatment (no more than 2 years), safety follow-up and survival follow-up. This study consists of two stages: dose escalation and dose expansion. During the dose escalation stage, a classic "3+3" design will be used to guide dose escalation to determine MTD and RP2D. Three to six subjects are expected to be enrolled in each dose group and at least 6 subjects are enrolled in the MTD/highest dose group. The total number of subjects enrolled during the dose escalation stage will depend on the amount of DLT and the total number of dose levels explored. If DLT is not observed in the first 3 subjects enrolled for each dose level, the Safety Monitoring Committee (SMC, including investigators, pharmacologists, and the sponsor's medical specialists, and other experienced members specially invited as necessary) will review the cumulative safety data of subjects at each dose level and decide whether to proceed with dose escalation upon the completion of study treatment at least for the DLT evaluation period (28 days of Cycle 1). The dose expansion stage in this study will be initiated at the MTD or the optimal dose determined by the SMC as a fixed dose level (MTD or the optimal dose needs to be reviewed by the SMC and subjects are safe and tolerable at that dose level). The dose expansion stage is expected to include the following two cohorts of relapsed and drug resistant primary malignant brain tumors with BRAF V600 mutations:Cohort 1: GBM, N = up to 25 patients; Cohort 2: In addition to GBM, other primary malignant brain tumors, N = up to 15 patients. In this study, the corresponding sample size for each cohort/tumor type may be determined according to the actual efficacy and safety data obtained. After each cohort included the first 10 patients, the available safety, efficacy, and PK data were analyzed. Based on the analysis results, the sponsor decided whether to continue recruiting patients for the study.
This is an observational post-market study determining biopsy accuracy in a clinical environment using Cirq® Robotic Alignment Module Cranial. The goal is to determine whether the robotic procedure to be examined can achieve a clinically acceptable value of at least 90% in terms of diagnostic yield.
This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.