Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02983370
Other study ID # CORTIVIS16-HUM1
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date October 1, 2019
Est. completion date December 2025

Study information

Verified date May 2024
Source Universidad Miguel Hernandez de Elche
Contact Eduardo Fernandez, MD and PhD
Phone +34 965222001
Email e.fernandez@umh.es
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The objective of this study is to evaluate the usefulness of a cortical visual prosthesis based on intracortical microelectrodes to provide a limited but useful sense of vision to profoundly blind. This pilot study will provide important information on safety and efficacy for the development of an useful cortical visual neuroprosthesis for the blind.


Description:

Visual impairment is one of the ten most prevalent disabilities and poses extraordinary challenges to individuals in our society, which is heavily dependent on sight. Drug development and genetic engineering have had only marginal success as possible treatments but new hope has been generated by recent advances in neuroscience, micro-fabrication technologies, biomaterials, neuromorphic engineering and information and communication technologies leading to the development of highly sophisticated neural prosthetic devices which interact with the nervous system. Such assistive devices have already allowed thousands of deaf patients to hear sounds and acquire language abilities and the same hope exists in the field of visual rehabilitation. Several research groups worldwide are engaged in attempts to restore vision through retinal prosthesis. However these devices are not viable for all causes of blindness. Thus, if the communication link between eye and brain is destroyed (e.g. for Glaucoma or optic nerve atrophy), as is the case for 148 million people worldwide, then visual cortical prosthesis holds the dominant hope for visual restoration. Consequently, there are many compelling reasons to pursue the development of a cortical prosthesis capable of restoring some useful vision in profoundly blind patients and this approach may be the only treatment available for end-stage retinitis pigmentosa patients and for pathologies such as glaucoma optic atrophy, trauma to the retina and/or optic nerves, and for diseases of the central visual pathways due to brain injuries or stroke. The investigators will implant the CORTIVIS vision neuroprosthetic system, which utilizes a FDA cleared microelectrode array, into blind human volunteers and obtain descriptive feedback about visualized percepts. The experiments are designed to learn if volunteers can learn to integrate the electrical stimulation of brain visual areas into meaningful percepts. It is expected that a cortical device can create truly meaningful visual percepts that can be translated into functional gains such as the recognition, localization and grasping of objects or skillful navigation in familiar an unfamiliar environments resulting in a substantial improvement in the standard of living of blind and visually impaired persons. All the experiments will be carried out at the patient's hospital room (Hospital IMED Elche) during the post-surgical period or in a human psychophysical laboratory (University Miguel Hernández).


Recruitment information / eligibility

Status Recruiting
Enrollment 5
Est. completion date December 2025
Est. primary completion date October 2025
Accepts healthy volunteers No
Gender All
Age group 18 Years to 70 Years
Eligibility Inclusion Criteria: - Participant is capable and willing to provide informed consent for participation in the trial. - Severe visual impairment with bilateral visual loss. - Greater than 18 years of age. - General health: excellent. - Following a general physical and neurological examination, patient must have normal serum electrolytes, C-reactive protein, complete blood count and PT and PTT. - No history of stroke, seizure, coagulopathy, cardiac arrhythmias or ischemia, pulmonary, hepatic or renal disease, nor transmissible viruses such as hepatitis or HIV. - Stable dose of current regular medication for at least four weeks prior to trial entry. - Able to perform the study during the full time period of up to 6 months. Special consideration will be given to patients with (1) detailed medical histories, including documentation of the onset, mechanism and evolution of the blindness; (2) lower risks associated with surgery; and (3) no psychiatric disorders or other mental disabilities. Exclusion Criteria: - Age <18 or >70. - Period of appropriate visual functions < 12 years /lifetime. - For medical reasons: Individuals with a history of seizure disorders, coagulopathy, cardiac arrythmias or ischemia, pulmonary, hepatic or renal disease, and any other neurological disorder. Patients who carry a transmissible virus such as hepatitis and individuals with HIV-related neuropathies. - Vulnerable subject groups (e.g., pregnant women, prisoners, etc.). - Persons unable to give written informed consent prior to participation in the study. - Not able to perform the study during the full time period (at least 3 months). - Any other significant disease or disorder which, in the opinion of the Investigator, may either put the participants at risk because of participation in the trial, or may influence the result of the trial, or the participant's ability to participate in the trial.

Study Design


Related Conditions & MeSH terms


Intervention

Procedure:
Minicraniotomy
The surgical method for the implantation of the intracortical microelectrodes is straightforward and follows the standard neurosurgical procedures. Briefly, after the scalp is prepped with an antiseptic, a small skin incision is made. Then the skin and muscles are lifted off from the bone and folded back. Next, one small burr hole or a minicraniotomy of approximately 1.5 cm is made in the skull. This is a minimally invasive procedure that allows an easy access to the brain and is a standard procedure widely used in neurosurgery.

Locations

Country Name City State
Spain Hospital IMED Elche Elche Alicante
Spain Universidad Miguel Hernandez de Elche Elche Alicante

Sponsors (2)

Lead Sponsor Collaborator
Universidad Miguel Hernandez de Elche Hospital IMED Elche

Country where clinical trial is conducted

Spain, 

References & Publications (12)

Alfaro A, Bernabeu A, Agullo C, Parra J, Fernandez E. Hearing colors: an example of brain plasticity. Front Syst Neurosci. 2015 Apr 14;9:56. doi: 10.3389/fnsys.2015.00056. eCollection 2015. — View Citation

Bernabeu A, Alfaro A, Garcia M, Fernandez E. Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage. 2009 Oct 1;47(4):1172-6. doi: 10.1016/j.neuroimage.2009.04.080. Epub 2009 May 5. — View Citation

Fernandez E, Alfaro A, Soto-Sanchez C, Gonzalez-Lopez P, Lozano AM, Pena S, Grima MD, Rodil A, Gomez B, Chen X, Roelfsema PR, Rolston JD, Davis TS, Normann RA. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J Clin Invest. 2021 Dec 1;131(23):e151331. doi: 10.1172/JCI151331. — View Citation

Fernandez E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sanchez C, Alfaro A, Normann RA. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng. 2014 Jul 21;7:24. doi: 10.3389/fneng.2014.00024. eCollection 2014. — View Citation

Fernandez E, Pelayo F, Romero S, Bongard M, Marin C, Alfaro A, Merabet L. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng. 2005 Dec;2(4):R1-12. doi: 10.1088/1741-2560/2/4/R01. Epub 2005 Nov 29. — View Citation

Marin C, Fernandez E. Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroeng. 2010 May 28;3:8. doi: 10.3389/fneng.2010.00008. eCollection 2010. — View Citation

Martinez-Alvarez A, Crespo-Cano R, Diaz-Tahoces A, Cuenca-Asensi S, Ferrandez Vicente JM, Fernandez E. Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm. Int J Neural Syst. 2016 Nov;26(7):1650021. doi: 10.1142/S0129065716500210. Epub 2016 Mar 29. — View Citation

Maynard EM, Fernandez E, Normann RA. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods. 2000 Apr 15;97(2):93-101. doi: 10.1016/s0165-0270(00)00159-x. — View Citation

Morillas CA, Romero SF, Martinez A, Pelayo FJ, Ros E, Fernandez E. A design framework to model retinas. Biosystems. 2007 Feb;87(2-3):156-63. doi: 10.1016/j.biosystems.2006.09.009. Epub 2006 Sep 7. — View Citation

Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng. 2016 Dec;13(6):061003. doi: 10.1088/1741-2560/13/6/061003. Epub 2016 Oct 20. — View Citation

Normann RA, Greger B, House P, Romero SF, Pelayo F, Fernandez E. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 2009 Jun;6(3):035001. doi: 10.1088/1741-2560/6/3/035001. Epub 2009 May 20. Erratum In: J Neural Eng. 2009 Aug;6(4):049802. Greger, Bradley A [corrected to Greger, Bradley]. — View Citation

Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience. 2001;105(1):19-31. doi: 10.1016/s0306-4522(01)00174-9. — View Citation

* Note: There are 12 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Thresholds of visual perceptions elicited by intracortical microstimulation Charges needed for eliciting visual perceptions through electrical stimulation of the human cortex Within implantation period (up to 6 months)
Secondary Phosphene mapping Location of induced perceptions within the visual field by pointing with the finger where the phosphene is perceived Within implantation period (up to 6 months)
Secondary Visual Acuity Spatial resolution measured by computerized visual tests Within implantation period (up to 6 months)
Secondary Motion perception Correct perception of movement with a coarse pattern moving in one of four directions Within implantation period (up to 6 months)
Secondary Visual function Effectiveness of intracortical microstimulation to recognize letters, habitual objects and complex stimulation patterrns as measured by a suite of visual function tests. Questionnaire. Within implantation period (up to 6 months)
Secondary Number of participants with significant adverse events. Complications and adverse events will be assessed through participant description of any possible adverse event, neurological examination, clinical tests and a specific questionnaire. Within implantation period (up to 6 months)
See also
  Status Clinical Trial Phase
Active, not recruiting NCT02393118 - A Study to Evaluate the BrainPort Vision Device in Individuals Blinded by Traumatic Injury N/A
Terminated NCT00262509 - Emergency Egress and Information System for Persons With Vision Loss N/A
Terminated NCT00691444 - Blind Child Melatonin Treatment Study N/A
Recruiting NCT06237829 - Testing Tactile Aids With Blind Subjects N/A
Completed NCT00829036 - Wayfinding Information Access System for People With Vision Loss N/A
Completed NCT01488786 - A Study to Evaluate the BrainPort® Vision Device in Subjects Who Are Blind N/A
Completed NCT02643238 - Continued Study of Artificial Vision: Evaluation of the BrainPort® System and Investigation of Visual Ambulation N/A
Recruiting NCT00403143 - Do Blue-Blocking Lenses Block Blue Colour From Our Lives? N/A
Recruiting NCT06451172 - Novel Antisense Oligonucleotide Eye Drops for Treating Antibiotic-Resistant Bacterial Keratitis Early Phase 1
Recruiting NCT04725760 - Evaluation of the Efficacy of the BrainPort Vision Pro on the Performance of Daily Activities in the Profoundly Blind French Population N/A
Not yet recruiting NCT06070467 - Holistic Mixed Approaches to Capture the Real Life of Children With Rare Eye Diseases
Completed NCT00920231 - Computer Vision System for the Blind Veteran Phase 1
Completed NCT01109576 - Workshops for Veterans With Vision and Hearing Loss Phase 0
Terminated NCT00795236 - Melatonin Studies of Totally Blind Children N/A
Terminated NCT00634972 - Efficient Study of ACULAR in Inhibiting Proliferative Retinopathy in Prematurity Phase 4
Enrolling by invitation NCT06364605 - MySpace: the Role of Vision in Representing Space N/A
Terminated NCT03913130 - Extension Study to Study PQ-110-001 (NCT03140969) Phase 1/Phase 2
Not yet recruiting NCT05806684 - Hyperbilirubinemia and Retinopathy of Prematurity in Preterm Infants: a Retrospective Study.
Completed NCT03753893 - Ocular Manifestations in Rheumatic Diseases
Recruiting NCT04855045 - An Open-label, Dose Escalation and Double-masked, Randomized, Controlled Trial Evaluating Safety and Tolerability of Sepofarsen in Children (<8 Years of Age) With LCA10 Caused by Mutations in the CEP290 Gene. Phase 2/Phase 3