View clinical trials related to Blast Crisis.
Filter by:This phase I/II trial studies the side effects of donor lymphocyte infusion and to see how well it works in treating patients with persistent, relapsed (disease that has returned), or progressing cancer after donor hematopoietic cell transplantation. White blood cells from donors may be able to kill cancer cells in patients with cancer that has come back (recurrent) after a donor hematopoietic cell transplant.
The goal is to compare the drug combinations clofarabine/idarubicin/ara-C, clofarabine/ara-C, and clofarabine/idarubicin in the treatment of patients with Acute Myeloid Leukemia, high-grade MDS, or myeloid blast phase of Chronic Myeloid Leukemia who have relapsed following their initial therapy.
This phase II trial is studying how well giving imatinib mesylate together with decitabine works in treating patients with accelerated or blast phase chronic myelogenous leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Giving imatinib mesylate together with decitabine may kill more cancer cells
This phase I trial is studying the side effects and best dose of FR901228 in treating children with refractory or recurrent solid tumors or leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die
This phase I/II trial is studies the side effects of giving therapeutic allogeneic lymphocytes together with aldesleukin and to see how well it works in treating patients with high-risk or recurrent myeloid leukemia after undergoing donor stem cell transplant. Biological therapies, such as therapeutic autologous lymphocytes, may stimulate the immune system in different ways and stop cancer cells from growing. Aldesleukin may stimulate the white blood cells to kill cancer cells. Giving therapeutic autologous lymphocytes together with aldesleukin may kill more cancer cells
To determine the safety and efficacy of decitabine in patients with Philadelphia chromosome-positive chronic myelogenous leukemia blastic phase that were previously treated with imatinib mesylate (STI 571) and became resistant/refractory or were found to be intolerant to the drug.
The purpose of this study is to determine the safety and tolerability of an oral Farnesyl Protein Transferase Inhibitor (SCH 66336) as a single agent in patients with Advanced Myelodysplastic Syndrome, Acute Myelogenous Leukemia, Chronic Myelogenous Leukemia in Blast Crisis, or Acute Lymphoblastic Leukemia.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
This phase II trial is to see if combining bevacizumab with idarubicin and cytarabine works better in treating patients who have blast phase chronic myelogenous leukemia. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or deliver cancer-killing substances to them. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may be an effective treatment for blast phase chronic myelogenous leukemia
Phase I/II trial to study the effectiveness of combining STI571 and chemotherapy in treating patients who have chronic myelogenous leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. STI571 may stop the growth of leukemia cells. Combining chemotherapy and STI571 may kill more cancer cells