View clinical trials related to Blast Crisis.
Filter by:This phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.
This is a Phase 1-2, multicenter, international, single-arm, open-label study designed to identify a recommended dose of bosutinib administered orally once daily in pediatric patients with newly diagnosed chronic phase Ph+ CML (ND CML) and pediatric patients with Ph+CML who have received at least one prior TKI therapy (R/I CML), to preliminary estimate the safety and tolerability and efficacy, and to evaluate the PK of bosutinib in this patient population.
This phase II trial studies how well the combination of decitabine, venetoclax, and ponatinib work for the treatment of Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia. Drugs used in chemotherapy such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine, venetoclax, and ponatinib may help to control Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia.
This phase I/II trial studies the best dose of venetoclax when given together with ponatinib and dexamethasone and to see how well they work in treating participants with Philadelphia chromosome or BCR-ABL positive acute lymphoblastic leukemia or chronic myelogenous leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as venetoclax and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving venetoclax, ponatinib, and dexamethasone may work better in treating participants with acute lymphoblastic leukemia or chronic myelogenous leukemia.
This phase II trial studies how well low-intensity chemotherapy and ponatinib work in treating patients with Philadelphia chromosome-positive and/or BCR-ABL positive acute lymphoblastic leukemia that may have come back or is not responding to treatment. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with rituximab and blinatumomab, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Granulocyte colony stimulating factor helps the bone marrow make recover after treatment. Giving low-intensity chemotherapy, ponatinib, and blinatumomab may work better in treating patients with acute lymphoblastic leukemia.
This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.
Multi-center, single stage, phase II study to evaluate the efficacy and safety of Flumatinib in accelerated or blastic Phase chronic myelogenous leukemia patients.
This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.
This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.
This phase II trial studies the side effects and how well combination chemotherapy and ponatinib hydrochloride work in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy and ponatinib hydrochloride may be an effective treatment for acute lymphoblastic leukemia.