Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT06383039
Other study ID # ZSoy
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date May 16, 2022
Est. completion date May 13, 2023

Study information

Verified date April 2024
Source Medipol University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Postural control is an adaptive sensorimotor process involving continuous integration of sensory information from three channels. These; visual, somatosensory (proprioceptive) and vestibular senses. The study will be carried out at Istanbul Medipol University. 30 healthy individuals between the ages of 18-25 will be included. To each individual Anodal-supplementary motor area tDCS, Anodal-cerebellar tDCS, Sham tDCS applications will be cross-applied. tDCS application will take 20 minutes and each individual will receive 3 sessions in total. There will be a 72-hour rest period between sessions. Individuals assessed with Demographic Information Form for demographic information, Wii-Fit and Balance Error Scoring System for Static Balance Evaluation, Star Balance Test and Timed Get Up and Go Test for Dynamic Balance Assessment. The aim of this study is to investigate the effect of transcranial direct current stimulation applied on the supplementary motor area and cerebellum on static and dynamic balance in healthy individuals.


Description:

Postural control is an adaptive sensorimotor process involving continuous integration of sensory information from three channels. These; visual, somatosensory (proprioceptive) and vestibular senses. The cerebellum plays an important role in the planning, initiation and stability of movements, as well as in postural control and balance. The Supplementary Motor Area (SMA) is a section of the cortex that plays a major role in planning both simple and complex motor movements; It has many functions such as sequence of movements (turning one's hand before picking up an object), learning (learning a new balance task), acquiring grammar. The SMA is somatotopic organized and has direct reciprocal connections with the primary motor cortex (M1). Independent of the primary motor cortex (M1), the SMA is thought to play a crucial role in planning motor actions before movement begins. It also contributes to the planning of all body movements together with the basal ganglia and cerebellum during challenging balance tasks. Modulation of neural regions underlying balance control may be a potential alternative for therapy. Transcranial direct current stimulation (tDCS) is a non-invasive and safe tool that can modulate cerebellar activity. tDCS is an easy, inexpensive and portable device to implement. There are 3 different types of stimulation. While anodal stimulation promotes neural excitability by causing subthreshold depolarization, cathodal stimulation inhibits neural activity, and in addition, anode-cathode application, in which two types of stimulation are used together, provides both facilitation and inhibition according to electrode placement. In a study conducted by Foerster et al. in healthy individuals in 2017, it was found that cerebellar tDCS increased balance stability, and in a study by Ehsani et al. in healthy individuals over 60 years of age in 2017, cerebellar tDCS increased the Berg Balance balance score. In a study conducted by Steiner et al. in 2016 in which cerebellar tDCS was applied to young individuals, it was observed that the trunk deviation angle during balance was decreased in men, while a similar study by Inukai et al. showed a decrease in oscillation after cathodal cerebellar tDCS. There are studies showing that tDCS applied to the supplementary motor area has positive contributions to balance. It has been shown by Nomura et al. that tDCS applied to the supplementary motor area in healthy individuals causes a significant increase in balance. There is no study comparing supplementary motor area and cerebellar area application in healthy individuals where tDCS is applied. In line with these studies, the aim of this study is: To investigate the effect of transcranial direct current stimulation applied on the supplementary motor area and cerebellum on static and dynamic balance in healthy individuals. The study will be carried out at Istanbul Medipol University. 30 healthy individuals between the ages of 18-25 will be included. To each individual: 1. Anodal-supplementary motor area tDCS 2. Anodal-cerebellar tDCS 3. Sham tDCS applications will be cross-applied. tDCS application will take 20 minutes and each individual will receive 3 sessions in total. There will be a 72-hour rest period between sessions. Evaluations will be made at the beginning and will be repeated immediately after tDCS applications. Inclusion Criteria: - No neurological, sensory, motor, visual or cognitive impairment, - Volunteering to participate in the study, - Being between the ages of 18-25, - To have formal education at the university. Exclusion Criteria: • Being diagnosed with a psychological disorder. Evaluations will be made in the presence of a physiotherapist. Individuals; For demographic information • Demographic Information Form For Static Balance Evaluation: - Wii-Fit - Balance Error Scoring System For Dynamic Balance Assessment: - Star Balance Test - Timed Get Up and Go Test It will be evaluated with IBM SPSS "Statistical Package for Social Sciences".


Recruitment information / eligibility

Status Completed
Enrollment 30
Est. completion date May 13, 2023
Est. primary completion date September 6, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 25 Years
Eligibility Inclusion Criteria: - No neurological, sensory, motor, visual or cognitive impairment, - Volunteering to participate in the study, - Being between the ages of 18-25, - To have formal education at the university. Exclusion Criteria: - Being diagnosed with a psychological disorder.

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Transcranial Direct Current Stimulation
Evaluations will be made in the presence of a physiotherapist. Individuals; For demographic information • Demographic Information Form For Static Balance Evaluation: Wii-Fit Balance Error Scoring System For Dynamic Balance Assessment: Star Balance Test Timed Get Up and Go Test

Locations

Country Name City State
Turkey Istanbul Medipol University Istanbul Beykoz

Sponsors (1)

Lead Sponsor Collaborator
Zeynep Soy

Country where clinical trial is conducted

Turkey, 

References & Publications (4)

Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J Neuroeng Rehabil. 2017 Sep 13;14(1):95. doi: 10.1186/s12984-017-0301-7. — View Citation

Hayduk-Costa G, Drummond NM, Carlsen AN. Anodal tDCS over SMA decreases the probability of withholding an anticipated action. Behav Brain Res. 2013 Nov 15;257:208-14. doi: 10.1016/j.bbr.2013.09.030. Epub 2013 Sep 21. — View Citation

Hupfeld KE, Ketcham CJ, Schneider HD. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks. Exp Brain Res. 2017 Mar;235(3):851-859. doi: 10.1007/s00221-016-4848-5. Epub 2016 Dec 1. — View Citation

Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002 Sep;88(3):1097-118. doi: 10.1152/jn.2002.88.3.1097. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Demographic Information Form Demographic Information Form includes the patient's personal information, sociodemographic and physical characteristics.It includes: name, surname, date of the birth, using cigarette / alcohol, presence presence of disease, using drugs 4 months
Primary Wii-Fit Nintendo Wii Fit Balance Evaluation was carried out in a darkened room with no light. In this setup, the Nintendo Wii Fit image was projected on the wall with a projector. The patient's birth year and height were recorded according to the device's instructions. The patient's weight was calculated in centimeter by the device. The patient was taught how to step on the board. First, the patient was asked to stand looking straight ahead without moving, and the center of gravity on the right and left foot was calculated as a percentage. Then the patient's body mass index was calculated in kg/m^2. Afterwards, the patient was asked to step in the middle of the balance board with one foot and maintain this position for 30 seconds. A single-leg stabilization test was performed separately for both feet and the results were recorded as a percentage. 4 months
Primary balance error scoring system 2 different surfaces and 3 stance positions . Normal floor is used for flat surface, foam block is used for foam surface. Subjects apply the 6 conditions of the test in the following order: flat surface with two legs support, one foot support and tandem stance position; sponge surface with two legs support, one foot support and tandem stance. The duration of each position was measured by a smart watch for approximately 20 seconds. Each mistake made by individuals within 20 seconds was recorded as 1 point. Six different situations counted as errors are as follows: - Pulling the arms over the iliac crest - Opening the eyes - Taking a step, stumbling or falling - Flexing or abducting the hip joint more than 30° - Lifting the foot or heel off the ground - More than five seconds out of the test position staying too long. Error scores were calculated separately for each position and the total error score was obtained by adding the scores. Higher score indicates worse balance 4 months
Primary star excursion balance test On the determined floor, 4 strips cut in 2 meters length are adhered to form 45 degree angles between them. The participant waits in the middle of the star shape (the point where the lines intersect).The participant reaches as far as she can reach with her foot.Then the other line is passed and a total of 8 lines are completed in this way.At the end of each distance, a mark was made with a pencil so that you could measure it later. Highest score was obtained from 3 reaches in each direction. 4 months
Primary Time Up & Go Test 3 meters area is determined in front of the chair. The patient is asked to get up from his seat and go to the designated place and sit down again. The time is recorded in seconds. shorter time indicates better balance 4 months
See also
  Status Clinical Trial Phase
Recruiting NCT04039048 - Effect of ctDCS During Balance Training on Cerebellar Ataxia N/A
Not yet recruiting NCT04105322 - Effects of Kinesio Taping on Balance and Functional Performance in Stroke Patients N/A
Completed NCT00934531 - Donepezil and the Risk of Falls in Seniors With Cognitive Impairment N/A
Completed NCT05563311 - Functional Assessment and Sleep Apnea in Obese Children and Adolescents N/A
Completed NCT03674268 - Psycometric Properties of Pushing Scale
Completed NCT03403218 - Spanish Version of the Balance Evaluation Systems Test and Mini Balance Evaluation Systems Test N/A
Completed NCT04563182 - Relationship Between Gluteus Medius Muscle Strength, Balance and Jumping Performance in Professional Female Handball Players
Recruiting NCT05983809 - Technological Balance and Gait Rehabilitation in Patients With Multiple Sclerosis. N/A
Completed NCT05779189 - Effects of Game-based Virtual Reality Intervention on Senior Fitness, Fall Prevention and Balance Function Among Older Adults N/A
Completed NCT04671524 - The Effect of Improvement in Function on Foot Pressure, Balance and Gait in Children With Upper Extremity Affected N/A
Completed NCT06405854 - Coordination-based Exercise Intervention in Preschool Children N/A
Not yet recruiting NCT06267833 - The Effect of Trunk and Upper Extremity Exercises Added to the Otago Exercise Program N/A
Active, not recruiting NCT05910606 - Strong Foundations 2.0: A Digitally Delivered Fall Prevention Program. N/A
Not yet recruiting NCT05973279 - The Relationship Between Lower Limb Functionality, Knee Joint Position Sense, Balance and Falls in Haemiplegic Patients
Active, not recruiting NCT03892291 - Objective Dual-task Turning Measures for Return-to-duty Assessments
Completed NCT05043727 - Effects of Exer Gaming on Balance and Gait in Parkinson's Patients N/A
Completed NCT04014998 - Effectiveness of Virtual Reality in Patients With Chronic Neck Pain N/A
Completed NCT01698086 - Vestibular Rehabilitation for Persons With Multiple Sclerosis: Who Benefits the Most? (MSVR3trial) N/A
Completed NCT03376334 - A Pilot Study to Investigate the Effect of Motor Imagery on Dynamic Balance of Asymptomatic Students N/A
Completed NCT05319626 - Immediate Effects of Two Different Lower Limb Sensory Stimulation Strategies on Balance and Mobility in Older Adults N/A