View clinical trials related to B-Cell Non-Hodgkin Lymphoma.
Filter by:This study will evaluate the safety, pharmacokinetics, and preliminary efficacy of mosunetuzumab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone (M-CHOP) and, subsequently, in combination with cyclophosphamide, doxorubicin, and prednisone (CHP) plus polatuzumab vedotin (CHP-pola) in participants with relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma (NHL), and in previously untreated participants with diffuse large B-cell lymphoma (DLBCL).
This study will evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy of intravenous (IV) or subcutaneous (SC) mosunetuzumab in combination with polatuzumab vedotin in participants with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). It will consist of a dose finding portion followed by an expansion phase for second line or later (2L+) participants with relapsed or refractory (R/R) DLBCL and 2L+ R/R FL. In addition, subcutaneous mosunetuzumab in combination with polatuzumab vedotin will be evaluated in participants with at least 2 prior lines of systemic therapy (3L+) for the treatment of R/R mantle cell lymphoma (MCL) and in participants with 2L+ R/R DLBCL.
This phase II trial studies how well tailored prednisone reduction works in preventing hyperglycemia in participants with B-cell non-Hodgkin lymphoma receiving combination chemotherapy treatment. Drugs used in chemotherapy, such as rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Reductions in prednisone dose may lower blood sugar levels.
This is a single arm, single-center, non-randomized study to evaluate the safety and efficacy of C-CAR011 therapy in relapsed or refractory B cell Non-Hodgkin Lymphoma (NHL).
This phase I trial studies the side effects and best dose of the anti-OX40 antibody BMS-986178 when given together with the TLR9 agonist SD-101 and radiation therapy in treating patients with low-grade B-cell Non-Hodgkin lymphomas. TLR9 agonist SD-101 may stimulate the immune system in different ways and stop cancer cells from growing. Anti-OX40 antibody is a monoclonal antibody that enhances the activation of T cells, immune cells that are important for fighting tumors Radiation therapy uses high energy x-rays to kill cancer cells and may make them more easily detected by the immune system. Giving TLR9 agonist SD-101 together with anti-OX40 antibody BMS 986178 and radiation therapy may work better in treating patients with low-grade B-cell non-hodgkin lymphomas.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
This study will be a standard 3+3 design with a lead in of TGR-1202 at dose of 600mg (dose level 1) or 800mg daily (dose level 2) for 6 weeks, i.e. 2 cycles, followed by pembrolizumab at 200mg every 3 weeks for 8 cycles along with TGR-1202 for patients with relapsed/refractory B-cell NHL or CLL. If the dose of 600mg daily of TGR-1202 (dose level 1) is tolerated in the first cohort the dose will be increased to 800mg qd which is the only and final dose escalation. If TGR-1202 is not tolerated at 600mg daily the dose will be decreased to 400mg daily. The lead in of TGR-1202 was chosen to ensure clinical benefit and to minimize the occurrence of early overlapping toxicity with pembrolizumab as most toxicities were observed early on in the treatment with idelalisib, a related PI3K-inhibitor, and rituximab.
The purpose of this study is to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary antitumor activity of AZD4573 in subjects with relapsed or refractory haematological malignancies.
This pilot clinical trial compares the safety of two different platelet transfusion "thresholds" among patients with blood cancer or treatment-induced thrombocytopenia whose condition requires anticoagulant medication (blood thinners) for blood clots. Giving relatively fewer platelet transfusions may reduce the side effects of frequent platelet transfusions without leading to undue bleeding.
The investigators primary objective is to determine the safety and toxicity of incorporating blinatumomab into the post-allogeneic hematopoietic stem cell transplant (HSCT) maintenance setting for patients with CD19+-B-cell malignancies (Acute Lymphoblastic Leukemia [ALL], Non-Hodgkin's Lymphoma [NHL]).