Clinical Trials Logo

Autoimmune Diseases clinical trials

View clinical trials related to Autoimmune Diseases.

Filter by:

NCT ID: NCT01917760 Completed - Diabetes Mellitus Clinical Trials

Pharmacokinetics Study of Gamma-aminobutyric Acid

GABA-PK
Start date: July 2013
Phase: Phase 1
Study type: Observational

The purpose of this study is to determine upon administering GABA orally to a person how it is absorbed, distributed, as well as the drug's pharmacological effects on the body such as glucose levels, serum C-peptide and/or insulin levels (referred to as pharmacokinetics/pharmacodynamics). We will conduct experiments in normal subjects to address these questions.

NCT ID: NCT01835457 Completed - Autoimmune Diseases Clinical Trials

Concentration/Meditation Limits Inflammation

Start date: February 2013
Phase: N/A
Study type: Interventional

Auto-immune diseases are characterized by an inappropriate inflammatory response against tissues in the body and represent a major health care burden. Pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β play a central role in the pathophysiology of many auto-immune diseases. Innovative therapies aimed at limiting pro-inflammatory cytokine production in a more physiological manner are warranted. In previous research conducted in an individual known as "the iceman", the investigators found that, through a autodidact concentration/meditation technique, he appears to mount a controlled stress response, characterized by activation of the sympathetic nervous system and enhanced production of cortisol, both of which are known to result in immunosuppression. In accordance, while practicing this concentration/meditation technique, the inflammatory response during human endotoxemia (lipopolysaccharide [LPS] administration) was remarkably low in this individual. Therefore, this technique could provide a novel means of controlling the inflammatory response. However, the aforementioned results were obtained in just one subject, and hence can not serve as scientific evidence for the effectiveness of the concentration/meditation technique. The iceman claims that he can teach this technique to other subjects within a relatively short time frame. Therefore, in the present study the investigators wish to investigate the effect of concentration/meditation on autonomic nervous system activity and the inflammatory response during experimental human endotoxemia in a controlled manner, by comparing a group of subjects that are trained by "the iceman" and practice the concentration/meditation technique with a group of subjects which do not.

NCT ID: NCT01815996 Completed - Pregnancy Clinical Trials

Identify Clinical Conditions That Increase Circulating DNA Levels

BARDA II
Start date: October 2012
Phase:
Study type: Observational

The investigators are developing a test that is expected to measure the amount of radiation a patient has been exposed to after a nuclear bomb. The investigator will do this by measuring the DNA in the patients blood from cells killed by the radiation. Many diseases and medical conditions can put DNA in the blood. The investigator needs to know how much DNA in order to better interpret our radiation detection test. Therefore, the investigator is collecting blood from several patients with different diseases or medical conditions and also healthy volunteers to measure their DNA content. Patients that will be included in this study are pregnant women, patients who have suffered a pulmonary embolism within the past 48 hours, patients who have suffered from myocardial infarction in the past 48 hours, patients with autoimmune diseases and health patients.

NCT ID: NCT01778348 Completed - Diabetes Mellitus Clinical Trials

Closing the Loop in Children and Adolescents With Type 1 Diabetes in the Home Setting

APCam08
Start date: December 2013
Phase: Phase 2
Study type: Interventional

Type 1 diabetes (T1D) is one of the most common chronic childhood diseases requiring lifelong insulin therapy. Children and adolescents with T1D need regular insulin injections or the continuous insulin delivery using an insulin pump in order to keep blood glucose levels normal. We know that keeping blood sugars in the normal range will help prevent longterm diabetes-related complications involving the eyes, kidneys and heart. However, achieving treatment goals can be very difficult as the tighter we try to control blood glucose levels, the greater the risk to develop symptoms and signs of low glucose levels (hypoglycaemia). This is a particular problem at night and one solution is to develop a system whereby the amount of insulin injected is controlled by a computer and is very closely matched to the blood sugar levels on a continuous basis. This can be achieved by what is known as a "closed-loop system" where a small glucose sensor placed under the skin communicates with a computer containing an algorithm that drives an insulin pump. We have been testing such a system in Cambridge over the last five years in children and have found that this system is effective at maintaining tight glucose control and preventing nocturnal hypoglycaemia. More recently the system has been tested in real life conditions in the home setting for three weeks during a pilot single-centre study. The next step is to extend the evaluation of closed-loop over a prolonged period of three months. In the present study we are planning to study 24 young people aged 6-18 years on insulin pump therapy. During three months glucose will be controlled by the computer and during the other three months the subjects will make their own adjustments to the insulin therapy using real-time continuous glucose monitoring. We aim to determine the effect of the computer algorithm in keeping glucose levels between 3.9 and 8 mmol/L (normal levels). Safety evaluation comprises assessment of the frequency of severe hypoglycaemic episodes. Participants' response to the use of the system in terms of lifestyle change, daily diabetes management and fear of hypoglycaemia will be assessed. We will also test for longer term glucose control by measuring glycated haemoglobin (HbA1c).

NCT ID: NCT01773031 Completed - Autoimmune Disease Clinical Trials

Pancreatic Duct Evaluation in Autoimmune Pancreatitis: MR Pancreatography

Start date: January 2013
Phase: N/A
Study type: Observational

A prospective intra-individual study to compare the image quality of magnetic resonance (MR) pancreatography at 3.0 T and 1.5 T in patients with autoimmune pancreatitis.

NCT ID: NCT01764594 Completed - Autoimmune Diseases Clinical Trials

Safety Study of CDP7657 in Patients With Systemic Lupus Erythematosus

Start date: January 2013
Phase: Phase 1
Study type: Interventional

To evaluate safety, tolerability pharmacokinetics and immunogenicity of CDP7657.

NCT ID: NCT01758250 Completed - Sickle Cell Disease Clinical Trials

Microvascular and Fibrosis Imaging Study

Start date: February 2013
Phase:
Study type: Observational

In this study, Laser Doppler Flowmetry (LDF), Laser Doppler Imaging (LDI), Orthogonal Polarization Spectral Imaging (OPSI), Nail fold video capillaroscopy (NVC) and Optical Coherence Tomography (OCT) will be used to assess differences in microvascular function and density of oral mucosa and skin in subjects with 1) autoimmune diseases with cutaneous involvement: systemic sclerosis (SSc), morphea, dermatomyositis, cutaneous lupus and vasculitis, 2) sickle cell disease (SCD) and 3) chronic graft-versus-host disease (GVHD) compared to healthy subjects. The microvascular changes will be compared to overall treatment response in patients with scleroderma and chronic GVHD as assessments will be made before and after the patients start treatment for their diseases and determine if these imaging techniques provide valuable and reproducible data when assessing a patient's response to treatment for those diseases. In addition, the application of Acoustic Radiation Force Impulse (ARFI) in determining cutaneous thickness in patients with SSc, GVHD and morphea will be evaluated. The investigators hypothesize that the vascular and dermal structures are altered in patients with autoimmune disease, SCD and chronic GVHD. In addition, they hypothesize that imaging modalities such as LDF, LDI, OCT, NVC, OPSI and ARFI can quantify such structural alterations and can be used to 1) detect early disease activity, 2) quantify and assess response to therapy and 3) quantify and correlate with overall disease activity.

NCT ID: NCT01735123 Completed - Clinical trials for Diabetes Mellitus, Type 1

Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity

EDIA
Start date: January 2013
Phase: N/A
Study type: Interventional

The proposed mechanistic formula feeding study sets out to identify the mechanism(s) by which an extensively hydrolyzed casein formula is able to protect children at risk for type 1 diabetes (T1D) from beta-cell autoimmunity.

NCT ID: NCT01727973 Completed - Autoimmune Diseases Clinical Trials

Efficacy of Subantimicrobial Dose Doxycycline for Moderate to Severe and Active Graves' Orbitopathy

Start date: October 2012
Phase: Phase 1/Phase 2
Study type: Interventional

The aim of this study is to evaluate the effects of subantimicrobial dose doxycycline (50 mg/d), administered for 12 wk, for patients with active moderate-severe Graves' Orbitopathy (GO).

NCT ID: NCT01698515 Completed - Clinical trials for Rheumatoid Arthritis

Oral Health Assessment in Rheumatoid Arthritis and Other Autoimmune Diseases-- Anti- TNF Substudy

Start date: August 2012
Phase: N/A
Study type: Observational

The objective of this study is to evaluate the effect of Tumor Necrosis Factor (TNF) inhibition on oral parameters in patients with RA and to examine changes in levels of proinflammatory cytokines in serum, gingival crevicular fluid (GCF), and saliva at an early time point (6-8 wk) and a later time point (14-16 wk) after the initiation of therapy in relation to concomitant assessment of Rheumatoid arthritis (RA) and oral clinical variables. The purposes of the study are to: 1. Determine if oral periodontal parameters are affected by TNF inhibition; 2. Examine relationships between periodontal variables and RA variables with TNF inhibition; 3. Determine if there may be potential early response markers of clinical RA response seen using ultrasensitive analysis of oral or serum cytokines.