Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01133899
Other study ID # AN-85E-S09
Secondary ID
Status Completed
Phase Phase 1/Phase 2
First received May 28, 2010
Last updated December 18, 2011
Start date March 2010
Est. completion date December 2011

Study information

Verified date December 2011
Source Metropolitan University, Serbia
Contact n/a
Is FDA regulated No
Health authority Serbia: Ethics Committee
Study type Interventional

Clinical Trial Summary

Glycocyamine (guanidinoacetic acid - GAA) is the biochemical precursor of creatine, which is phosphorylated and plays an important role as a high-energy carrier in the muscle. Since GAA can be administered in liquid solutions, such as sports drinks, it could be hypothesised that GAA could easily enhance creatine biosynthesis with clear physiological effects yet to be determined. No single study has examined the influence of GAA on health, human performance or body composition indicators in healthy human subjects. Moreover, the most effective dose of GAA is yet to be find. Finally, the adverse effects of GAA supplementation in humans are not determined. The main aims of the present study will be to identify if the 6-weeks of GAA supplementation improves human performance and body composition, to determine most effective dose regimens of GAA, and to analyze adverse effects of GAA supplementation. Forty eight healthy, trained (> 2 yr training experience) male and female subjects (aged 20 to 25 years) will give their informed consent and volunteer to participate in the study, which will obtain the approval of the University's Ethical Advisory Commission. The subjects will be allocated to four randomly assigned trials: ingesting GAA (1.2, 2.4, 4.8 g of GAA in a single dose) or placebo (PLA) for 6 weeks in a double-blind design. All testing including blood and urine samples, body composition and muscle strength and exercise performance (both aerobic and anaerobic) will be conducted at presupplementation (baseline), at 1 week, at 2 weeks, at 4 weeks, at 6 weeks of supplementation and at 8 and 10 weeks (2 and 4 weeks after the end of supplementation) to analyze wash-out period. According to previous investigations, the investigators expect that ingestion of GAA will significantly increase both serum creatine and total homocystein. The investigators expect that ingestion of GAA will significantly improve muscle strength parameters and exercise performance results as compared to placebo in long term. The investigators also expect to find prevalence of side-effects (i.e. gastrointestinal distress, retention of fluid).


Description:

For the last two decades, top athletes first, then sport professionals and amateur sports participants have been using oral creatine supplementation on regular basis as an ergogenic aid to improve performance (Poortmans & Francaux 2000). Up to 90% of team-game athletes are regular consumers of creatine (Striegel et al. 2006), with nearly 60% of recreational athletes have tried creatine (Froiland et al. 2004). Supplementation with oral creatine, that currently is viewed to be safe, augments skeletal muscle creatine concentrations in most individuals, which has been shown to promote gains in lean body mass when used in conjunction with resistance training, to enhance power and strength, and to improve performance in intense exercise, especially during repeated bouts (Racette 2003; Ostojic 2004). Yet, creatine is not stable in solution and as such is only offered in a variety of non-liquid forms including powder, tablets, gel, chewing gum, and candy (Benzi & Ceci 2001). Although creatine synthesis is a proprietary process among manufacturers, it is quite common to use another muscle-related compounds (i.e. sarcosine, cyanamide), as the principal starting materials for the commercial synthesis of creatine (Williams & Branch 1998). Glycocyamine (guanidinoacetic acid - GAA) along with L-ornithine is formed from arginine and glycine in the kidney, with this reaction is believed to be the regulated step of creatine biosynthesis (Edison et al. 2007). The second enzyme in the pathway is GAA N-methyltransferaze which catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to GAA to form S-adenosylhomocysteine (SAH) and creatine (Walker 1979). It has been estimated that about 75% of labile methyl groups is used to synthetize creatine by a reaction catalyzed by GAA N-methyltransferaze (Mudd et al. 1975). It seems that creatine synthesis is an interorgan process whereby GAA, produced by the kindey, is released into the circulation and is methylated to creatine in the liver. Creatine is then released from the liver and into the circulation where it can be taken up, via a specific transporter, by various tissues. According to previous studies in animals (da Silva et al. 2009) and preliminary research in humans (AlzChem 2009), short-term oral intake of GAA increases serum level of creatine, with level of increase interrelated with GAA dose supplemented. GAA is the biochemical presursor of creatine, which is phosphorylated and plays an important role as a high-energy carrier in the muscle (Edison et al. 2007). Since GAA can be administred in liquid solutions, such as sports drinks, it could be hypothesised that GAA could easily enhance creatine biosynthesis with clear physiological effects yet to be determined. Moreover, it seems that GAA has a significantly better bioavailability than creatine, developing maximal activity at a dosage at which creatine leads to no observable effects (AlzChem 2009). Several human studies (Borsook & Borsook 1951; Graybiel & Patterson 1951; Higgins et al. 1952; Dixon et al. 1954) found beneficial effects of creatine precursors oral administration on cardiac decompensation, arthritis, anxiety and depression patients. Authors speculated that benefical effects of GAA intake could be due to boosting energy levels and/or increased availability of dimethylglycine for incorporation into tissue proteins, providing repair of damaged muscle cells. Yet, no single study has examined the influence of additive-free GAA (e.g. without betaine or choline) on health, human performance or body composition indices. The amount taken of this supplementation ranges typically from a few grams to tens of grams per day for weeks or months in previous research in humans. Although, the most effective dose is yet to be find. Finally, the adverse effects of GAA supplementation in both animals and humans are yet to be determined. Several studies showed moderate hyperhomocysteinemia (Stead et al. 2001; Fukada et al. 2006; Setoue et al. 2008; AlzChem 2009), disturbances in antioxidant system (Zugno et al. 2008), modulation of inflammatory responses (Glorieux et al. 2004) after GAA supplementation. If GAA have ergogenic properties it could become new effective performance-enhancing substance for both professional and recreational athletes, stable in water solutions, where creatine at neutral to slightly acidic pH-values is rapidly being metabolised to creatinine, which is meaningless for the energy production (AlzChem 2009).


Recruitment information / eligibility

Status Completed
Enrollment 40
Est. completion date December 2011
Est. primary completion date December 2011
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Both
Age group 20 Years to 25 Years
Eligibility Inclusion Criteria:

- healthy young men and women

- aged 20 to 25 years

- experienced in athletic training

- free from musculoskeletal dysfunctions

- free from metabolic and heart diseases

- participating in consistent training (average of three times per week)

Exclusion Criteria:

- current intake of dietary supplement containing performance-enhancing agent

- pregnant women

- current intake of hormonal contraceptives

Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Basic Science


Related Conditions & MeSH terms


Intervention

Dietary Supplement:
guanidinoacetic acid
2.4 grams of guanidinoacetic acid
GAA-4
4.8 grams of guanidinoacetic acid
GAA-1
1.2 grams of guanidinoacetic acid
PLACEBO
celulose

Locations

Country Name City State
Serbia Biomedical Scinces Department, Exercise Physiology Lab Novi Sad Vojvodina

Sponsors (1)

Lead Sponsor Collaborator
Metropolitan University, Serbia

Country where clinical trial is conducted

Serbia, 

References & Publications (6)

BORSOOK ME, BORSOOK H. Treatment of cardiac decompensation with betaine and glycocyamine. Ann West Med Surg. 1951 Oct;5(10):830-55. — View Citation

da Silva RP, Nissim I, Brosnan ME, Brosnan JT. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab. 2009 Feb;296(2):E256-61. doi: 10.1152/ajpendo.90547.2008. Epub 2008 Nov 18. — View Citation

Edison EE, Brosnan ME, Meyer C, Brosnan JT. Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol. 2007 Dec;293(6):F1799-804. Epub 2007 Oct 10. — View Citation

Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism. 1975 Jun;24(6):721-35. — View Citation

Ostojic SM. Creatine supplementation in young soccer players. Int J Sport Nutr Exerc Metab. 2004 Feb;14(1):95-103. — View Citation

Setoue M, Ohuchi S, Morita T, Sugiyama K. Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats. Biosci Biotechnol Biochem. 2008 Jul;72(7):1696-703. Epub 2008 Jul 7. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Muscle power The majority of investigations involving the effects of creatine (or creatine precursors) supplementation on human performance were laboratory-based and have focused on musucular strength and power and anaerobic endurance, with various task protocols such as weght lifting, running, jumping and cycling less than or equal to 30 sec in duration. Similarly, the effects of GAA on exercise performance should be investigated with measuring muscle strength and power (through both isometric and isotonic exercise) and anaerobic endurance (e.g. repeated jumping performance). Baseline, at 1 week, at 2 weeks, at 4 weeks, at 6 weeks, at 8 weeks, at 10 weeks No
Secondary Muscle mass A creatine supplementation-induced increase in body mass, particularly if not muscle mass, could be detrimental to performance in sports in which the body mass needs to be moved efficiently from one point to another. If GAA acts as creatine, which is an osmotically active substance, an increase in intracellular creatine concentration may likely induce influx of water into the cell. Therefore, changes of body mass and body composition (particularly muscle mass) after GAA intake should be monitored during the present study. Baseline, at 1 week, at 2 weeks, at 4 weeks, at 6 weeks, at 8 weeks and at 10 weeks No
See also
  Status Clinical Trial Phase
Completed NCT03683758 - Effects of the FIFA11+ Warm-up Program on Speed, Agility, and Vertical Jump Performance in Adult Female Amateur Soccer Players N/A
Completed NCT02177383 - Action of Essential Fatty Acids on the Expression of Antioxidant Genes and Athletic Performance N/A
Completed NCT04663633 - The Effect of Eight-week Specific Core Training on Core Stability, Balances and Jumps in Young Rhythmic Gymnasts N/A
Completed NCT04086303 - Anthropometric and Physical Fitness Differences Among Turkish Adolescents and Adults Handball Players N/A
Completed NCT04005846 - tDCS to Increase Aerobic Performance in Runners Phase 1/Phase 2
Completed NCT05990036 - The Outcome of Sports Vision Training on Collegiate Softball Players N/A
Completed NCT03753321 - Whey and Soy Protein Supplementation in Football Players N/A
Recruiting NCT01241877 - Astaxanthin Supplementation in Cyclists N/A
Completed NCT03210558 - Study of Testosterone and Athlete Response Phase 2
Completed NCT06197932 - Big Toe Strength Training on Athletic Performance Parameter N/A
Completed NCT05864651 - Tele-Exercise for Male Elite Fencers N/A
Completed NCT05862987 - The Effect of Hydrogen Rich Water Intake on Acute Body Response and Following Recovery After 5 km Run in Untrained Men N/A
Completed NCT04078971 - Effects of Ketogenic Diet on Body Composition and Performance in Soccer Players N/A
Recruiting NCT04121481 - Clinical Study on Prodovite® VMP35 Supplement on Athletic Performance N/A
Recruiting NCT06406764 - Effects of a Plyometric Training Program on Youths With Different Biological Maturity in Sport N/A
Recruiting NCT06165393 - The Effect of Alginate Encapsulated Supplements on Athletic Performance and Recovery N/A
Completed NCT04375163 - Effects of Massage Between Sets of an Intense Isokinetic Exercise- Protocol of Knee Extensors in Tae Kwon Do Athletes N/A
Completed NCT05207332 - The Effect of a Vegan Alginate Product on Athletes Recovery and Performance N/A
Enrolling by invitation NCT04336007 - Effects of Diathermy Application on Immediate Sports Performance of Paralympic Swimmers N/A
Completed NCT05936398 - Influence of Respiratory Muscle Training on Objective and Subjective Training Load Measures in Triathletes N/A