Clinical Trials Logo

Astrocytoma clinical trials

View clinical trials related to Astrocytoma.

Filter by:

NCT ID: NCT00650923 Completed - Adult Glioblastoma Clinical Trials

Aflibercept, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma Multiforme, Gliosarcoma, or Other Malignant Glioma

Start date: July 2008
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of aflibercept when given together with radiation therapy and temozolomide in treating patients with newly diagnosed or recurrent glioblastoma multiforme, gliosarcoma, or other malignant glioma. Aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with radiation therapy and temozolomide may kill more tumor cells.

NCT ID: NCT00645385 Withdrawn - Clinical trials for Glioblastoma Multiforme

Examination of Changes on Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) in Patients Who Receive Gliadel Wafers During Initial Surgery for Glioblastoma Multiforme. Response or Failure to Gliadel Wafers for Subjects With Glioblastoma Multiforme.

Gliadel-MRS
Start date: June 2007
Phase:
Study type: Observational

Subjects with newly diagnosed brain tumors who undergo surgical resection and whose pathology in the operating room shows a high grade glioma will be eligible. During a screening visit, the study will be discussed, inform consent discussed and signed, a medical history will be taken and a physical examination and laboratory tests will be performed. If these tests are all within acceptable ranges, the subject will be considered for inclusion on this treatment protocol. If the results of any tests are extremely different from normal expected values, she/he may not be able to participate. Prior to surgery, the subject will have a contrast enhanced MRI and MRS. The neurosurgeon will attempt to remove the majority of the tumor in the operating room and will send a portion of the specimen removed to the pathologist immediately. This is called a "frozen section". If the pathologist believes that the tumor is a high-grade malignant brain tumor, then the surgeon will place up to 8 dime-sized chemotherapy wafers in the tumor cavity of the brain. The remainder of the tumor specimen will be given to the pathologist to review more closely in the laboratory. If the frozen section does not show that the tumor is a high-grade malignant brain tumor, the subject will not receive the Gliadel wafers and will be removed from the study. The surgeon will then discuss with the subject the appropriate treatment options for the disease he or she has. During recovery in the hospital, another contrast enhanced MRI will be performed within the first 72 hours after surgery. This is a standard of care for patients who are not involved on this protocol as well. The subject will have another contrast enhanced MRI and MRS performed at the 21st Day after his or her surgery. After Day 21, He or she may begin other forms of treatment. The last contrast enhanced MRI and MRS assessment will be performed 12 weeks after the surgery and the implantation of the Gliadel wafers. Further MRI and MRS may be performed subsequently at the discretion of the doctor. Throughout the course of treatment, clinical data will be collected.

NCT ID: NCT00643591 Terminated - Clinical trials for Cerebral Astrocytoma, High Grade

Positron Emission Tomography-Computed Tomography (PET-CT) High-grade Glioma

Start date: June 2008
Phase: N/A
Study type: Observational

The objectives of the trial are: - To determine the localisation within the primary tumor of the therapy resistant cells, before and during radiotherapy to determine a possible accurate boost volume. - To determine changes during treatment intra- and extratumoral within the irradiated area.(Intratumoral: change of up-take - decrease, increase, change of localization/ Extratumoral: effects of temporal changes in up-take - e.g. due to oedema).

NCT ID: NCT00638898 Active, not recruiting - Solid Tumor Clinical Trials

Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor

Start date: February 26, 2007
Phase: Phase 1
Study type: Interventional

RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.

NCT ID: NCT00624728 Completed - Glioblastoma Clinical Trials

Assessment of 18FLT PET-CT for Volume Definition of High-grade Gliomas (GLIO-TEP)

GLIO-TEP
Start date: February 2008
Phase: Phase 1/Phase 2
Study type: Interventional

18F-Fluorothymidine is a recently developed PET tracer to image tumor cell proliferation. Very few data report an interest of using such a tracer for cerebral malignant tumor management. In our project, we want to compare the tumoral volumes obtained with PET and MRI, with the gold standard histopathological diagnosis according to the WHO grading malignancy scale and the Ki-67 proliferation index, for preoperative evaluation as much as for tumoral postoperative residue evaluation. Furthermore, we want to explore the interest of 18F-FLT-PET volume to better delineate tumoral volume in radiotherapeutic management of gliomas.

NCT ID: NCT00612651 Completed - Glioblastoma Clinical Trials

PH I Addition of Farnesyl Transferase Inhibitor to Temozolomide for Pts w Gr 3 & 4 Malignant Gliomas

Start date: October 2005
Phase: Phase 1
Study type: Interventional

Objectives: To determine maximum tolerated dose of farnesyl transferase inhibitor, SCH 66336, when administered w TEMODAR®. To characterize any toxicity associated w combo of farnesyl transferase inhibitor, SCH 66336, & TEMODAR®. To observe patients for clinical antitumor response when treated with combination of farnesyl transferase inhibitor, SCH 66336, & TEMODAR®. To assess pharmacokinetics of SCH 66336 for patients on & not on enzyme inducing antiepileptic drugs.

NCT ID: NCT00610571 Completed - Glioblastoma Clinical Trials

Ph I Oral Topotecan and Temozolomide for Patients With Malignant Gliomas

Start date: April 2004
Phase: Phase 1
Study type: Interventional

Objectives: - To determine the maximum tolerated dose of oral topotecan when administered with Temodar to patients with malignant glioma - To characterize any toxicity associated with the combination oral topotecan and Temodar. - To observe patients for clinical antitumor response when treated with oral topotecan and Temodar.

NCT ID: NCT00606008 Completed - Glioblastoma Clinical Trials

A Phase II Trial of Sutent (Sunitinib; SU011248) for Recurrent Anaplastic Astrocytoma and Glioblastoma

Start date: March 2007
Phase: Phase 2
Study type: Interventional

We are asked patients to take part in this study because they had recurrent (returned) (1st or 2nd) anaplastic astrocytoma (AA) or glioblastoma multiforme (GBM). The purposes of this study are: - To see if Sutent has any change on the patient and their cancer. - To see if Sutent will slow or stop the growth of their tumor. - To measure the safety of Sutent. Sutent is Food and Drug Administration (FDA) approved to treat patients with a gastrointestinal stromal tumor after the disease worsened while taking another medicine called imatinib mesylate or when imatinib mesylate cannot be taken. Sutent is also FDA approved to treat patients with advanced renal cell carcinoma. At this time, it is not known whether Sutent will improve symptoms, or help patients with this disease live longer.

NCT ID: NCT00591058 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Safety and Dose-Finding Study of TM-601 in Adults With Recurrent Malignant Glioma

Start date: February 2008
Phase: Phase 1
Study type: Interventional

The purpose of this study is to evaluate the safety and biologically active dose of TM-601 in adult patients with recurrent malignant glioma.

NCT ID: NCT00589875 Completed - Clinical trials for Glioblastoma Multiforme

Phase 2a Study of CAN-2409 With Standard Radiation Therapy for Malignant Glioma

BrTK02
Start date: March 2007
Phase: Phase 2
Study type: Interventional

The purpose of this study was to evaluate the safety and potential efficacy of CAN-2409 (also known / previously described as AdV-tk, GMCI) for malignant gliomas. The approach used an adenoviral vector (disabled virus) engineered to express the Herpes thymidine kinase gene (aglatimagene besadenovec, CAN-2409), followed by an antiherpetic prodrug, valacyclovir. CAN-2409 was injected into the resection bed after standard tumor surgery and valacyclovir pills were taken for 14 days. Standard radiation and chemotherapy were administered which have been shown to work cooperatively with CAN-2409 + prodrug to kill tumor cells. The hypothesis is that this combination therapy can be safely delivered and will lead to improvement in the clinical outcome for patients with newly diagnosed malignant gliomas, including glioblastoma multiforme (WHO grade IV) and anaplastic astrocytomas (WHO grade III).