Clinical Trials Logo

Clinical Trial Summary

Glioblastomas (GBM) are the most common type of primary brain tumors with an annual incidence of approximately 500 patients in the Netherlands. Despite extensive treatment including a resection, radiation therapy and chemotherapy, the median overall survival is only 14.6 months. Epidermal growth factor receptor (EGFR) amplification or mutation is regularly observed in GBM and is thought to be a major contributor to resistance to radiotherapy and chemotherapy. The most common EGFR mutation in GBM (EGFRvIII) is present in 30-50% of GBM. Previously MAASTRO lab has shown that expression of EGFRvIII provides GBM cells with a survival advantage when exposed to stress factors such as hypoxia and nutrient deprivation. These metabolic stress factors activate a lysosomal degradation pathway, known as autophagy. Inhibition of autophagy sensitizes cells to hypoxia, reduces the viable hypoxic fraction in tumors with > 40% and subsequently sensitizes these tumors to irradiation. Chloroquine (CQ) is a potent autophagy blocker and is the most widely investigated substance in this context. Previously, the effect of CQ has been demonstrated in a small randomized controlled trial in GBM treated with radiotherapy and carmustine. Although not statistically significantly different, the rate of death over time was approximately half as large in patients receiving CQ as in patients receiving placebo. The intracellular effects of CQ are dose-dependent. Therefore, the authors suggest an increase in daily dose of CQ may be necessary. Furthermore, the combination of CQ with TMZ may induce more damage to the neoplastic cells. In the phase I part of this trial the recommended dose of CQ in combination with radiotherapy and temozolomide will be tested. In the phase II part of the trial patients with a histologically confirmed GBM will be randomized between standard treatment consisting of concurrent radiotherapy with temozolomide and adjuvant temozolomide (arm A) and standard treatment plus CQ (arm B).


Clinical Trial Description

This study is a multi-centre randomized controlled, open label, phase II trial for patients with de-novo GBM. Eligible patients will be randomized between arm A and arm B: Arm A (standard): Radiotherapy and chemotherapy according to standard protocol for newly diagnosed GBM. This consists of 30 daily fractions of 2 Gy or 33 fractions in 1.8 Gy to the tumor and surrounding margin in combination with temozolomide 75 mg/m² per os daily (po qd) and six adjuvant cycles of temozolomide 150 - 200 mg/m² po qd. Arm B (experimental): Standard treatment as described under arm A combined with daily intake of 400mg CQ. CQ will start with one week before the start of radiotherapy and end on the last day of radiotherapy. In a single centre exploratory substudy, thirty subjects sequentially recruited within MAASTRO clinic randomized to arm B will be invited to receive two 3-[18F]fluoro- 2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1- yl)propan-1-ol PET-scans ([18F]HX4 ). The first on day -6 (start CQ), the second on day 0 (before the start radiotherapy and TMZ). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02432417
Study type Interventional
Source Maastricht Radiation Oncology
Contact
Status Withdrawn
Phase Phase 2
Start date November 10, 2023
Completion date November 10, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT05664243 - A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Recruiting NCT05635734 - Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT03679754 - Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102 Phase 1
Completed NCT01250470 - Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma Phase 1
Terminated NCT03927222 - Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma Phase 2
Recruiting NCT03897491 - PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma Phase 2
Active, not recruiting NCT03587038 - OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma Phase 1
Completed NCT01922076 - Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas Phase 1
Recruiting NCT04391062 - Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma Phase 2
Active, not recruiting NCT03661723 - Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma Phase 2
Active, not recruiting NCT02655601 - Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001 Phase 2
Completed NCT02206230 - Trial of Hypofractionated Radiation Therapy for Glioblastoma Phase 2
Completed NCT03493932 - Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade Phase 1
Terminated NCT02709889 - Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06058988 - Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer Phase 2
Completed NCT03018288 - Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM) Phase 2
Not yet recruiting NCT04552977 - A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Terminated NCT02905643 - Discerning Pseudoprogression vs True Tumor Growth in GBMs