View clinical trials related to Asphyxia Perinatal.
Filter by:Hypoxic-ischemic encephalopathy is the most common cause of neurological damage in the neonatal period. It has an incidence of about 1.5-2.5% of livebirths in developed countries. It is associated with a high rate of mortality and morbidity. Major neurological outcomes such as cerebral palsy, mental retardation, learning disabilities, epilepsy occur in approximately 25% of survivors. The diagnostic and prognostic tools currently available for enrollment have limitations and additional reliable biomarkers are needed for all phases of clinical management. Sarnat staging has taken on a role in identifying those infants who may benefit from treatment of hypothermia, resulting in the need for neurological evaluation and staging within 6 hours of life. Therapeutic hypothermia is still the best therapeutic treatment. A new tool in neuroscience research is represented by micro-ribonucleic acid (microRNA) profiling. The presence of microRNAs in blood, urine and saliva and the ability to measure their levels non-invasively has opened new doors in the search for peripheral biomarkers for the diagnosis and prognosis of neurodegenerative diseases and also as possible pharmacological targets. The aim of the present study is to analyze a specific cluster of miRNAs selected from data obtained by macroarray (NGS Pannel) on the entire microRNAome in healthy newborns with normal cord arterial pH value (7.26-7.35) as control cases and in newborns with fetal metabolic acidosis with a pH threshold value lower than 7.12 of the blood gas analysis from cord arterial blood. This latter group will be further stratified into two groups, neonates who will practice therapeutic hypothermia according to current guidelines and a further group who will not practice therapeutic hypothermia. This study will make a further international contribution in evaluating and identifying the potential of microRNAs as diagnostic and prognostic biomarkers in perinatal asphyxia and hypoxic ischemic encephalopathy. Furthermore, the study aims to identify specific microRNA sequences as new possible markers to be used as an additional parameter for the enrollment of therapeutic hypothermia, especially in cases of mild hypoxic-ischemic encephalopathy.
Protection of brain development is a major aim in the Neonatal Intensive Care Unit. Hypoxic-Ischemic Encephalopathy (HIE) occurs in 3-5 per 1000 births. Only 47% of neonates have normal outcomes. The neurodevelopmental consequences of brain injury for asphyxiated term infants include cerebral palsy, severe intellectual disabilities and also a number of minor behavioural and cognitive deficits. However, there are very few therapeutic strategies for the prevention or treatment of brain damage. The gold standard is hypothermic treatment but, according to the literature, melatonin potentially acts in synergy with hypothermia for neuroprotection and to improve neurologic outcomes. Melatonin appears to be a good candidate because of its different protective effects including reactive oxygen species scavenging, excitotoxic cascade blockade, modulation of neuroinflammatory pathways. The research study will evaluate the neuroprotective properties and the effects of Melatonin in association with therapeutic hypothermia for hypoxic ischemic encephalopathy.