Artificial Intelligence Clinical Trial
Official title:
The Accuracy of Computer Aided Detection of Second Mesio-buccal Canal of Maxillary First Molars on CBCT Images Using Deep Learning Model (Artificial Intelligence): Diagnostic Accuracy Study
CAD systems are computer applications that assist in the detection and/or diagnosis of diseases by providing an unbiased "second opinion" to the image interpreter, aiming at improving accuracy and reducing time for analysis. With the rapid growth of Deep Learning (DL) algorithms in image-based applications, CAD systems can now be trained by DL to provide more advanced capability (ie, the capability of artificial intelligence [AI]) to best assist clinicians.
Countless studies and discussions have been based on the existence of a second canal in the mesiobuccal (MB) root of the maxillary molars , since it is strongly believed that one of the foremost reasons for endodontic failure in maxillary first molars is the difficulty of detecting and treating those second mesiobuccal (MB2) canals .The literature reveals that although MB2 canals of maxillary first molars have been found in more than 70% of in vitro studies , they were detected clinically in less than 40% of cases . Cone beam computed tomography (CBCT) is an imaging modality in the field of endodontics that has several advantages, including the ability to perform three-dimensional (3D) imaging of root canal systems with lower radiation doses, higher resolution, and no superimposition . Researchers have evaluated the efficiency of CBCT when it comes to identifying MB2 canals, and CBCT has been suggested to be a reliable method for the detection of these canals. However, in clinically relevant situations, such a smaller lesions on root-filled teeth, CBCT accuracy is greatly reduced (sensitivity 0.63, specificity 0.69) . Moreover, clinician dependent interpretation of CBCT imaging still suffers from low inter- and intra-observer agreement. Computer-aided detection and diagnosis (CAD) has been widely applied to biomedical image analysis outside of dentistry . ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04589078 -
Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
|
||
Completed |
NCT03857438 -
Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
|
||
Completed |
NCT04735055 -
Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
|
||
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Not yet recruiting |
NCT04337229 -
Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques
|
N/A | |
Completed |
NCT05687318 -
A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment
|
N/A | |
Recruiting |
NCT06051682 -
Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor.
|
N/A | |
Not yet recruiting |
NCT06039917 -
Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions
|
N/A | |
Not yet recruiting |
NCT06362629 -
AI App for Management of Atopic Dermatitis
|
N/A | |
Recruiting |
NCT06164002 -
A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials
|
N/A | |
Recruiting |
NCT06059378 -
Real-life Implementation of an AI-based Optical Diagnosis
|
N/A | |
Completed |
NCT05517889 -
Repeatability and Stability of Healthy Skin Features on OCT
|
||
Completed |
NCT04816981 -
AI-EBUS-Elastography for LN Staging
|
N/A | |
Completed |
NCT05006092 -
Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE)
|
N/A | |
Recruiting |
NCT04535466 -
Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
|
||
Enrolling by invitation |
NCT04719117 -
Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
|
||
Completed |
NCT04399590 -
Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
|
||
Recruiting |
NCT04126265 -
Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps
|
N/A | |
Recruiting |
NCT06255808 -
Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
|
||
Recruiting |
NCT04131530 -
Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
|