Clinical Trials Logo

Clinical Trial Summary

U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. Tumor volumetry after autosegmentation by trained U-Net-based architecture is final goal.


Clinical Trial Description

U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. After preprocessing with Z-isotropification and intensity normalization of images, 3 U-Net-based networks (2D U-Net, Attention U-Net, 3D U-Net) and 3 nnU-Net-based networks (2D nnU-Net, Attention nnU-Net, 3D nnU-Net) will be trained with meningioma-segmented images. For applying to 3D networks, sagittal and coronal images will be reconstructed using axial images. After prediction, the cut-off of the probability function, which is a trade-off, will be obtained with the Gaussian Mixture Modeling algorithm using the probability density function. The voxels having a probability function higher than that will be finally predicted as meningioma. Tumor volume is calculated as the sum of the product of segmented area and thickness of axial images. For performance evaluation, dice similarity coefficient (DSC), precision, and recall will be evaluated compared with manually segmented voxels for validation datasets. The results of volumetry of each model will be compared with manual segmentation-based volume through Pearson's correlation analysis. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05093751
Study type Observational
Source Seoul National University Hospital
Contact
Status Completed
Phase
Start date March 23, 2013
Completion date September 30, 2021

See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence