Artificial Intelligence Clinical Trial
Official title:
Automated Meningioma Segmentation and Volumetry Using a nnU-Net Based Architecture on Contrast-enhanced MRI
U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. Tumor volumetry after autosegmentation by trained U-Net-based architecture is final goal.
U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. After preprocessing with Z-isotropification and intensity normalization of images, 3 U-Net-based networks (2D U-Net, Attention U-Net, 3D U-Net) and 3 nnU-Net-based networks (2D nnU-Net, Attention nnU-Net, 3D nnU-Net) will be trained with meningioma-segmented images. For applying to 3D networks, sagittal and coronal images will be reconstructed using axial images. After prediction, the cut-off of the probability function, which is a trade-off, will be obtained with the Gaussian Mixture Modeling algorithm using the probability density function. The voxels having a probability function higher than that will be finally predicted as meningioma. Tumor volume is calculated as the sum of the product of segmented area and thickness of axial images. For performance evaluation, dice similarity coefficient (DSC), precision, and recall will be evaluated compared with manually segmented voxels for validation datasets. The results of volumetry of each model will be compared with manual segmentation-based volume through Pearson's correlation analysis. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04589078 -
Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
|
||
Completed |
NCT03857438 -
Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
|
||
Completed |
NCT04735055 -
Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
|
||
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Not yet recruiting |
NCT04337229 -
Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques
|
N/A | |
Completed |
NCT05687318 -
A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment
|
N/A | |
Recruiting |
NCT06051682 -
Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor.
|
N/A | |
Not yet recruiting |
NCT06039917 -
Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions
|
N/A | |
Not yet recruiting |
NCT06362629 -
AI App for Management of Atopic Dermatitis
|
N/A | |
Recruiting |
NCT06164002 -
A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials
|
N/A | |
Recruiting |
NCT06059378 -
Real-life Implementation of an AI-based Optical Diagnosis
|
N/A | |
Completed |
NCT05517889 -
Repeatability and Stability of Healthy Skin Features on OCT
|
||
Completed |
NCT05006092 -
Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE)
|
N/A | |
Completed |
NCT04816981 -
AI-EBUS-Elastography for LN Staging
|
N/A | |
Recruiting |
NCT04535466 -
Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
|
||
Enrolling by invitation |
NCT04719117 -
Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
|
||
Completed |
NCT04399590 -
Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
|
||
Recruiting |
NCT04126265 -
Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps
|
N/A | |
Recruiting |
NCT06255808 -
Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
|
||
Recruiting |
NCT04131530 -
Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
|