Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04309851
Other study ID # E86412-49
Secondary ID
Status Completed
Phase
First received
Last updated
Start date January 1, 2019
Est. completion date March 1, 2020

Study information

Verified date March 2020
Source Eskisehir Osmangazi University
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Objectives: The study aimed to compare the success and reliability of an artificial intelligence application in the detection and classification of submerged teeth in orthopantomography (OPG).

Methods: Convolutional neural networks (CNN) algorithms were used to detect and classify submerged molars. The detection module, which is based on the state-of-the-art Faster R-CNN architecture, processed the radiograph to define the boundaries of submerged molars. A separate testing set was used to evaluate the diagnostic performance of the system and compare it to the expert level.

Results: The success rate of classification and identification of the system is high when evaluated according to the reference standard. The system was extremely accurate in performance comparison with observers.

Conclusions: The performance of the proposed computer-aided diagnosis solution is comparable to that of experts. It is useful to diagnose submerged molars with an artificial intelligence application to prevent errors. Also, it will facilitate pediatric dentists' diagnoses.


Description:

Pre-processing, Training, and Classification The study was conducted with balanced data sets. The case and control data sets were randomly divided into two parts, the training group (27 case group/27 control group) and the test group (10 case group/10 control group) to prevent the use of the visuals in the training group for retesting. The testing data set was not seen by the system during the training phase.

All 2943-by-1435 pixel images in the data set were resized to 971 by 474 pixels prior to training. All OPG images used include the whole dentitions. The training and test data sets were used to estimate and generate weight factors for the optimal CNN algorithm. An arbitrary sequence was generated using open-source Python programming (Python 3.6.1, Python Software Foundation, Wilmington, DE, USA, https://www.python.org/) language and OpenCV, NumPy, Pandas, and Matplotlib libraries. In this study, Tensorflow for model development was used to classify submerged primary molars. InceptionV3 architecture was used as transfer learning, and the transfer values were saved in the cache. Then, fully connected layer and softmax classifiers were combined to form the final model layers. The training was carried out using 7000 steps with 16G RAM and a PC equipped with NVIDIA GeForce GTX 1050.


Recruitment information / eligibility

Status Completed
Enrollment 74
Est. completion date March 1, 2020
Est. primary completion date January 1, 2020
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 5 Years to 12 Years
Eligibility Inclusion Criteria:

Exclusion Criteria:

OPG images of poor quality (metal artifact, artifacts due to position errors during shooting, etc.) were excluded.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
deep learning
the deep learning method is a field of study involving artificial neural networks and similar machine learning algorithms with many hidden layers.

Locations

Country Name City State
Turkey Seçil Çaliskan Eskisehir

Sponsors (1)

Lead Sponsor Collaborator
Eskisehir Osmangazi University

Country where clinical trial is conducted

Turkey, 

Outcome

Type Measure Description Time frame Safety issue
Primary Submerged Tooth Detection The detection module, which is based on the state-of-the-art Faster R-CNN architecture, processed the radiograph to define the boundaries of submerged molars. 6 months
See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence