Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01441037
Other study ID # 110209
Secondary ID 11-H-0209
Status Completed
Phase Phase 1/Phase 2
First received
Last updated
Start date July 19, 2011
Est. completion date November 14, 2016

Study information

Verified date December 18, 2017
Source National Institutes of Health Clinical Center (CC)
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Background:

- Some people have bone marrow and lung disorders that are caused by genetic problems. These problems often involve damage to the ends of the chromosomes that pass down genes. One of these disorders is aplastic anemia. This is a disorder in which the bone marrow does not make enough blood cells. Currently, doctors use a male hormone-based drug called Danazol to improve bone marrow function and treat aplastic anemia. More information is needed on whether Danazol can help repair the damaged chromosomes that cause aplastic anemia and similar disorders that cause low blood cell counts or lung problems.

Objectives:

- To study the safety and effectiveness of Danazol for bone marrow and lung disorders caused by damaged genes.

Eligibility:

- Individuals at least 2 years of age who have low blood cell counts or lung fibrosis caused by damaged genes.

Design:

- Participants will be screened with a physical exam and medical history. Then they will have blood and urine tests, imaging studies, and a lung function test. They will also take a 6-minute walking test and have a bone marrow biopsy.

- Participants will receive Danazol to take twice a day for the duration of the study.

- Participants will have regular study visits at 6, 12, and 24 months, with blood tests, imaging studies, a lung function test, and a 6-minute walking test. A bone marrow sample will be collected at the 12-month visit.

- Participants will remain on the study for up to 2 years. Researchers will follow up with them for 2 years after the end of the study.


Description:

Severe aplastic anemia (SAA) is a life-threatening bone marrow failure disorder characterized by pancytopenia and a hypocellular bone marrow. Telomeres were reported to be short in up to one-third of patients with SAA.Initially this occurrence was presumed to be secondary to hematopoietic stress. However, the discovery of loss-of-function mutations in genes of the telomerase complex (TERC, TERT) established a genetic etiology for telomere attrition in some patients with marrow failure who did not have the stigmata associated to an inherited bone marrow failure syndrome. These findings implicated telomerase dysfunction in failed hematopoiesis. In family members of probands with SAA, telomerase mutations have been observed which were associated to varying degrees of cytopenias, idiopathic pulmonary fibrosis (IPF) and/or cirrhosis.

Telomere length has been associated with human cancer. Telomere attrition has been implicated in a variety of solid organ malignancies including esophageal and colon adenocarcinoma. In a longitudinal population based study, shorter telomere length associated to a higher cancer mortality risk overtime. It is plausible that a shorter telomere length is not just a biomarker associated to development of cancer, but involved in its pathogenesis. Ample experimental data supports an important role of critically short telomere length in genomic instability. Furthermore, our laboratory data (unpublished) shows that similar chromosome instability occurs in bone marrow cells of mutant patients, confirming the experimental data. Thus, a common molecular mechanism appears to underlie risk for cancer and a range of clinical entities.

In vitro studies suggest that telomere length could, in theory, be modulated with sex hormones.15 Exposure of normal peripheral blood lymphocytes and human bone marrow derived CD34+ cells to androgens increased telomerase activity in vitro and androgens increased low baseline telomerase activity in individuals carrying a loss-of-function TERT mutation to normal levels. In retrospect, the beneficial effects of sex hormones on telomerase activity may be the mechanism by which SAA patients treated over 40 years ago with male hormones showed hematologic improvement in some cases.

In recent years we have seen patients referred to our clinic with varying degree of cytopenia(s) who had significant family history for cytopenia(s), IPF and/or cirrhosis. We have identified very short telomeres in these patients and in some mutations in TERC and TERT. We hypothesize that male hormone therapy might modulate telomere attrition in vivo and ameliorate progression or reverse the clinical consequences of accelerated telomere attrition. Therefore, we propose male hormone therapy in patients with cytopenia(s) and/or IPF who show evidence of telomere dysfunction by a short age adjusted telomere length associated to telomerase gene mutations. The primary biologic endpoint will be delay of telomere attrition over time compared to known rates of telomere erosion in normal individuals and in those who carry mutation in the telomerase genes. The main clinical endpoint will be tolerability of oral danazol over two years. Secondary endpoints will be improvement in blood counts and/or pulmonary function. The small sample size, lack of control groups, and variable clinical course among those with marrow failure and IPF, will not allow for definitive assessment of clinical benefit. Nevertheless, we believe this protocol will provide insight into the possible effects of androgen therapy on telomere attrition in humans and of possible clinical benefit in telomere related disorders, and serve as hypothesis generating for further larger controlled studies.


Recruitment information / eligibility

Status Completed
Enrollment 27
Est. completion date November 14, 2016
Est. primary completion date November 14, 2016
Accepts healthy volunteers No
Gender All
Age group 2 Years and older
Eligibility - INCLUSION CRITERIA:

1. Short age-adjusted telomere length in the first percentile and/or a mutation in telomerase genes

2. One or more of the following cytopenia(s).

- Anemia

1. Symptomatic anemia with a hemoglobin < 9.5 g/dL or red cell transfusion requirements > 2 units/month for at least 2 months

2. Reticulocyte count < 60,000 /microL

- Thrombocytopenia

1. Platelet count < 30,000 /microL or < 50,000 /microL associated with bleeding

2. Decreased megakaryocytic precursors in the bone marrow

- Neutropenia

1. Absolute neutrophil count < 1,000 /microL

OR

3. Idiopathic pulmonary fibrosis diagnosed by either a lung biopsy of high resolution computed tomography scan of the chest according to guidelines from the American Thoracic Society and European Respiratory Society

4. Age greater than or equal to 2 years

5. Weight > 12 kg

EXCLUSION CRITERIA:

1. Moribund status or concurrent hepatic, renal, cardiac, neurologic, pulmonary, infectious, or metabolic disease of such severity that it would preclude the patient s ability to tolerate protocol therapy, or that death within 30 days is likely

2. Potential subjects with cancer who are on active chemotherapeutic treatment

3. Current pregnancy, or unwillingness to avoid pregnancy if of childbearing potential

4. Not able to understand the investigational nature of the study or give informed consent or does not have a legally authorized representative or surrogate that can provide informed consent.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Danazol
Danazol, 800 mg daily by mouth for 2 years

Locations

Country Name City State
United States National Institutes of Health Clinical Center, 9000 Rockville Pike Bethesda Maryland

Sponsors (1)

Lead Sponsor Collaborator
National Heart, Lung, and Blood Institute (NHLBI)

Country where clinical trial is conducted

United States, 

References & Publications (3)

Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood. 2008 May 1;111(9):4446-55. doi: 10.1182/blood-2007-08-019729. Epub 2008 Jan 31. Review. — View Citation

Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005 Apr 7;352(14):1413-24. — View Citation

Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006 Oct 15;108(8):2509-19. Epub 2006 Jun 15. Review. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Number of Patients Having Attenuation of Accelerated Telomere Attrition The primary efficacy end point was a 20% reduction in the annual rate of telomere attrition measured at 24 months. The biologic response at 24 months, was defined as a reduction in the telomere length attrition rate to 96 bp per year or less. The normal rate of telomere loss of approximately 60 bp per year. Telomere length was determined with a semiautomated, Clinical Laboratory Improvement Amendments (CLIA)-approved real-time quantitative PCR (qPCR) assay performed in triplicate and validated for human cells 24 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT03025698 - A Phase II Dose-escalation Study Characterizing the PK of Eltrombopag in Pediatric Patients With Previously Untreated or Relapsed Severe Aplastic Anemia or Recurrent Aplastic Anemia Phase 2
Completed NCT00987480 - Hematopoietic Stem Cell Transplantation for the Treatment of Patients With Fanconi Anemia Lacking a Genotypically Identical Donor, Using a Chemotherapy Only Cytoreduction With Busulfan, Cyclophosphamide and Fludarabine Phase 2
Completed NCT00767650 - Neuropsychological Effects of Immunosuppressive Treatment in Subjects With Aplastic Anemia N/A
Completed NCT02833805 - NMA Haplo or MUD BMT for Newly Diagnosed Severe Aplastic Anemia Phase 2
Not yet recruiting NCT02833493 - Study of MRI Monitoring in Patients With Aplastic Anemia and Low or Int-1 Risk of MDS Complicated With Iron Overload N/A
Recruiting NCT02028416 - Comparison of Two Different Doses of Rabbit ATG-Fresenius With Cyclosporin in the Treatment of Acquired Aplastic Anaemia N/A
Completed NCT00004474 - Phase III Randomized Study of Cyclophosphamide With or Without Antithymocyte Globulin Before Bone Marrow Transplantation in Patients With Aplastic Anemia Phase 3
Recruiting NCT05031897 - Reduced-Intensity Conditioning for the Prevention of Treatment-Related Mortality in Patients Who Undergo a Hematopoietic Stem Cell Transplant Phase 2
Completed NCT04439006 - Ibrutinib for the Treatment of COVID-19 in Patients Requiring Hospitalization Phase 1
Not yet recruiting NCT05996393 - CsA+ATG+AVA vs. CsA+AVA for the Treatment of Newly-diagnosed SAA in the Elderly Phase 4
Completed NCT02462252 - Phase IIA Open Label Study to Evaluate Efficacy and Safety of BL-8040 Followed by (hATG), Cyclosporine and Methyprednisolone in Adult Subjects With Aplastic Anemia or Hypoplastic Myelodysplastic Syndrome Phase 2
Completed NCT01272817 - Nonmyeloablative Allogeneic Transplant N/A
Completed NCT00513175 - Non-Myeloablative Allogeneic Stem Cell Transplantation With Matched Unrelated Donors for Treatment of Hematologic Malignancies, Renal Cell Carcinoma, and Aplastic Anemia N/A
Completed NCT00001398 - Stem Cell Factor Medication for Aplastic Anemia Phase 1
Recruiting NCT01861093 - Safety Study of Cord Blood Units for Stem Cell Transplants Phase 2
Not yet recruiting NCT05018936 - Efficacy and Safety of Hetrombopag in Non-severe Aplastic Anemia Phase 2/Phase 3
Completed NCT00065260 - Rabbit Antithymocyte Globulin Versus Campath-1H for Treating Severe Aplastic Anemia Phase 2
Recruiting NCT02007811 - Open-label Clinical Trial to Investigate the Safety and Tolerability of Allogeneic B-cell Concentrates for Immune Reconstitution After Allogeneic Stem Cell Transplantation Measured as Response to a Antedated Single Vaccination Phase 1/Phase 2
Recruiting NCT01758042 - Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders N/A
Terminated NCT01500161 - Pooled Unrelated Donor Umbilical Cord Blood Transplant For Hematologic Malignancy Needing Allogeneic Stem Cell Transplant Without Related HLA-Match Phase 2