View clinical trials related to Aplastic Anemia.
Filter by:Subjects will be diagnosed with a hematological malignancy (cancer of the blood), which is unlikely to be cured with conventional non-transplant therapy. The best results of bone marrow transplant are obtained with the donor is a relative that has identical tissue type (HLA-type). These subjects will not have such a donor available but they will have a appropriately matching unrelated umbilical cord blood unit (UCB). However, the cord blood unit does not contain a high enough number of cells and may take longer to engraft (or grow). The purpose of this study is to determine whether the addition of stem cells from a family member to supplement a standard unrelated cord blood transplant is safe and will increase the success of the cord blood transplantation procedure. Subjects enrolled in this study will receive an unrelated cord blood transplant plus a haplo-identical (half-matched), T-cell depleted stem transplant from a related donor. The goal of this study is to determine whether the addition of the related stem cells accelerates bone marrow recovery and improves long-term disease free survival.
The purpose of this study is to provide allogeneic stem cell transplantation to patients who have not traditionally undergone this procedure because of it high incidence of treatment related side effects. We hope to decrease these side effects by decreasing the chemotherapy dose prior to transplant (non-myeloablative, smaller dose of chemotherapy given so bone marrow is not completely eliminated) and by using donated stem cells to treat cancer of the blood.
Currently, there is no accurate way of predicting the occurrence of Graft vs Host Disease (GvHD) or infection. The purpose of this study is to analyze blood with the ImmuKnow® Assay to see if doctors can detect which patients are at risk for GvHD and for getting an infection before they occur.
Allogeneic stem cell transplantation may provide long-term remissions for some patients with hematological malignancies. However, allogeneic transplantation is associated with a significant risk of potentially life threatening complications due to the effects of chemotherapy and radiation on the body and the risks of serious infection. In addition, patients may develop a condition called Graft versus host disease that arises from an inflammatory reaction of the donor cells against the recipient's normal tissues. The risk of graft versus host disease is somewhat increased in patients who are receiving a transplant from an unrelated donor. One approach to reduce the toxicity of allogeneic transplantation is a strategy call nonmyeloablative or "mini" transplants. In this approach, patients receive a lower dose of chemotherapy in an effort to limit treatment related side effects. Patients undergoing this kind of transplant remain at risk for graft versus host disease particularly if they receive a transplant from an unrelated donor. The purpose of this research study is to examine the ability of a drug called CAMPATH-1H to reduce the risk of graft versus host disease and make transplantation safer. CAMPATH-1H binds to and eliminates cells in the system such as T cells that can cause graft versus host disease (GvHD). As a result, earlier studies have shown that patients who receive CAMPATH-1H with an allogeneic transplant have a lower risk of GvHD. In the present study, we will examine the impact of treatment with CAMPATH-1H as part of an allogeneic transplant on the development of GvHD and infection. In addition, we will study the effects of CAMPATH-1H on the immune system by testing blood samples in the laboratory.
The primary objective of this study is to examine transplant related mortality (TRM) at 100 days <30%. A TRM of >50% is considered unacceptable. This study also seeks a TRM at 12 months that is <50%, engraftment >90% (defined as donor cells >80% at 6 months), and 1 year overall survival >50%.
The goal of this clinical research study is to find out the best dose of cyclophosphamide that can be given with fludarabine, antithymocyte globulin (ATG), and low-dose total body irradiation (TBI) to patients before a bone marrow transplant to decrease the risks related to the transplant while not decreasing the effectiveness of the transplant from an unrelated donor.
To assess the tolerability and effectiveness of rabbit antithymocyte globulin (ATG, Thymoglobuline) with ciclosporin in the first line treatment of patients with acquired severe aplastic anaemia, and patients with non-severe aplastic anaemia and who are transfusion dependent.
Transplantation with stem cells is a standard therapy in many centers around the world. Previous experience with stem cell transplantation therapy for leukemias, lymphomas, other cancers, aplastic anemia and other non-malignant diseases, has led to prolonged disease-free survival or cure for some patients. However, the high doses of pre-transplant radiation and chemotherapy drugs used, and the type of drugs used, often cause many side effects that are intolerable for some patients. Slow recovery of blood counts is a frequent complication of high dose pre-transplant regimens, resulting in a longer period of risk for bleeding and infection plus a longer time in the hospital. Recent studies have shown that using lower doses of radiation and chemotherapy (ones that do not completely kill all of the patient's bone marrow cells) before blood or bone marrow transplant, may be a better treatment for high risk patients, such as those with Dyskeratosis Congenita (DC) or Severe Aplastic Anemia(SAA). These low dose transplants may result in shorter periods of low blood counts, and blood counts that do not go as low as with traditional pre-transplant radiation and chemotherapy. Furthermore, in patients with Dyskeratosis Congenita or SAA, the stem cell transplant will replace the blood forming cells with healthy cells. It has recently been shown that healthy marrow can take and grow after transplantation which uses doses of chemotherapy and radiation that are much lower than that given to patients with leukemia. While high doses of chemotherapy and radiation may be necessary to get rid of leukemia, this may not be important to patients with Dyskeratosis Congenita or SAA. The purpose of this research is to see if this lower dose chemotherapy and radiation regimen followed by transplant is a safe and effective treatment for patients with Dyskeratosis Congenita or SAA.
Primary Objectives: 1. To determine the feasibility and toxicity of employing purine-analog based conditioning for allogeneic donor stem cell transplantation in patients with severe aplastic anemia (AA). 2. To determine the engraftment kinetics and degree of chimerism that can be achieved with this strategy.
This clinical trial is studying how well giving cyclophosphamide together with anti-thymocyte globulin followed by methotrexate and cyclosporine works in preventing chronic graft-vs-host disease (GVHD) in patients with severe aplastic anemia undergoing donor bone marrow transplant. Giving low doses of chemotherapy, such as cyclophosphamide, before a donor bone marrow transplant helps stop the growth of abnormal cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining abnormal cells. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving anti-thymocyte globulin before and methotrexate and cyclosporine after transplant may stop this from happening