Aortic Valve Stenosis Clinical Trial
Official title:
Entscheidungsunterstützung Bei Herzklappenerkrankungen Anhand Funktionaler Und Morphologischer Eigenschaften Mittels Methoden Der Mathematischen Modellierung Und Des Maschinellen Lernens
A novel, image-based model for estimation of the pressure gradient across stenosed aortic valves is compared against invasively measured pressure gradients from clinical routine.
Using temporally resolved computed tomography images, the patient-specific geometry of the stenosed aortic valve during peak systole is reconstructed. Using this geometry, the projected area of the aortic valve's orifice (AVA) is calculated. Additionally, the left ventricular geometry is reconstructed for the complete heart cycle. Using the information of the left ventricular volume change, the patient-specific flow profile and peak-systolic flow (Q)is calculated. Using this information, the pressure gradient is calculated using a power law estimation of the form PG = a * AVA^b * Q^c. The model generation and parameter fit is described in [1]. To validate this model, retrospective data of patients receiving a catheter-based replacement of the aortic valve (TAVI) is collected. For those patients, CT images are already acquired for treatment planning and the invasive pressure measurements are performed during replacement of the aortic valve. Therefore, no additionally steps are required. Using the CT images the patient-specific aortic valve area ad flow rate are calculated. This information is then used for estimation of the pressure gradient using the power law model. The catheter-based pressure gradient is calculated as the difference between the peak-systolic pressure in the left ventricle and the ascending aorta before implantation of the prosthesis. [1] Franke et al.; Towards improving the accuracy of aortic transvalvular pressure gradients: rethinking Bernoulli; Medical & Biological Engineering & Computing (2020); https://doi.org/10.1007/s11517-020-02186-w ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03186339 -
Validation of the "TASQ" in Patients Undergoing SAVR or TF-TAVI
|
||
Recruiting |
NCT03549559 -
Imaging Histone Deacetylase in the Heart
|
N/A | |
Terminated |
NCT02854319 -
REpositionable Percutaneous Replacement of NatIve StEnotic Aortic Valve Through Implantation of LOTUS EDGE Valve System
|
N/A | |
Recruiting |
NCT05601453 -
The ReTAVI Prospective Observational Registry
|
||
Withdrawn |
NCT05481814 -
CPX in Paradoxical Low Flow Aortic Stenosis
|
||
Completed |
NCT02241109 -
Predicting Aortic Stenosis Progression by Measuring Serum Calcification Propensity
|
N/A | |
Completed |
NCT01700439 -
Surgical Treatment of Aortic Stenosis With a Next Generation, Rapid Deployment Surgical Aortic Valve
|
N/A | |
Recruiting |
NCT04429035 -
SLOW-Slower Progress of caLcificatiOn With Vitamin K2
|
N/A | |
Completed |
NCT04103931 -
Impact of a Patient Decision Aid for Treatment of Aortic Stenosis
|
N/A | |
Completed |
NCT03950440 -
Assessing the Incidence of Postoperative Delirium Following Aortic Valve Replacement
|
||
Active, not recruiting |
NCT02661451 -
Transcatheter Aortic Valve Replacement to UNload the Left Ventricle in Patients With ADvanced Heart Failure (TAVR UNLOAD)
|
N/A | |
Completed |
NCT02758964 -
Evaluation of Cerebral Thrombembolism After TAVR
|
||
Completed |
NCT02847546 -
Evaluation of the BARD® True™ Flow Valvuloplasty Perfusion Catheter for Aortic Valve Dilatation
|
N/A | |
Completed |
NCT02792452 -
Clinical Value of Stress Echocardiography in Moderate Aortic Stenosis
|
||
Not yet recruiting |
NCT02541877 -
Sizing-sTrategy of Bicuspid AoRtic Valve Stenosis With Transcatheter Self-expandable Valve
|
Phase 3 | |
Not yet recruiting |
NCT02536703 -
Safety and Efficacy of Lotus Valve For TAVI In Patients With Severe Aortic Stenosis In Chinese Population
|
Phase 3 | |
Not yet recruiting |
NCT02221921 -
Safety and Efficacy Study of MicroPort's Transcatheter Aortic Valve and Delivery System for TAVI
|
N/A | |
Completed |
NCT02249000 -
BIOVALVE - I / II Clincial Investigation
|
N/A | |
Active, not recruiting |
NCT02080299 -
Protection by Remote Ischemic Preconditioning During Transcatheter Aortic Valve Implantation
|
Phase 2 | |
Terminated |
NCT01939678 -
Characterization and Role of Mutations in Sodium-phosphate Cotransporters in Patients With Calcific Aortic Valve Disease
|