Anesthesia, General Clinical Trial
Official title:
Effect of High-flow Nasal Oxygenation on Safe Apnea Time in Children With Open Mouth
Verified date | July 2023 |
Source | Seoul National University Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
This is a prospective randomized controlled trial comparing high flow nasal cannula and buccal oxygenation as method of oxygenation during apnea in children.
Status | Completed |
Enrollment | 38 |
Est. completion date | March 21, 2023 |
Est. primary completion date | March 21, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A to 10 Years |
Eligibility | Inclusion Criteria: - Children under 11 years old undergoing general anesthesia with American Society of Anesthesiologists Physical Status 1 or 2. Exclusion Criteria: - Refusal of enrollment from one or more legal guardians of the patient - Plan of usage of supraglottic airway device as airway maintenance device - Presence of upper respiratory tract infection of lung disease - Premature infants younger than postconceptual age of 40 weeks - Anticipation of difficult bag-mask ventilation due to facial anomaly or micrognathia - Other conditions that are considered inappropriate for the study |
Country | Name | City | State |
---|---|---|---|
Korea, Republic of | Seoul National University Hospital | Seoul |
Lead Sponsor | Collaborator |
---|---|
Seoul National University Hospital | National Evidence-Based Healthcare Collaborating Agency |
Korea, Republic of,
Erb T, Marsch SC, Hampl KF, Frei FJ. Teaching the use of fiberoptic intubation for children older than two years of age. Anesth Analg. 1997 Nov;85(5):1037-41. doi: 10.1097/00000539-199711000-00013. — View Citation
Fiadjoe JE, Nishisaki A, Jagannathan N, Hunyady AI, Greenberg RS, Reynolds PI, Matuszczak ME, Rehman MA, Polaner DM, Szmuk P, Nadkarni VM, McGowan FX Jr, Litman RS, Kovatsis PG. Airway management complications in children with difficult tracheal intubation from the Pediatric Difficult Intubation (PeDI) registry: a prospective cohort analysis. Lancet Respir Med. 2016 Jan;4(1):37-48. doi: 10.1016/S2213-2600(15)00508-1. Epub 2015 Dec 17. — View Citation
Frei FJ, Ummenhofer W. Difficult intubation in paediatrics. Paediatr Anaesth. 1996;6(4):251-63. doi: 10.1111/j.1460-9592.1996.tb00447.x. No abstract available. — View Citation
Heard A, Toner AJ, Evans JR, Aranda Palacios AM, Lauer S. Apneic Oxygenation During Prolonged Laryngoscopy in Obese Patients: A Randomized, Controlled Trial of Buccal RAE Tube Oxygen Administration. Anesth Analg. 2017 Apr;124(4):1162-1167. doi: 10.1213/ANE.0000000000001564. — View Citation
Humphreys S, Lee-Archer P, Reyne G, Long D, Williams T, Schibler A. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) in children: a randomized controlled trial. Br J Anaesth. 2017 Feb;118(2):232-238. doi: 10.1093/bja/aew401. — View Citation
King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004 Sep-Oct;28(5):334-8. doi: 10.1177/0148607104028005334. — View Citation
Lodenius A, Piehl J, Ostlund A, Ullman J, Jonsson Fagerlund M. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) vs. facemask breathing pre-oxygenation for rapid sequence induction in adults: a prospective randomised non-blinded clinical trial. Anaesthesia. 2018 May;73(5):564-571. doi: 10.1111/anae.14215. Epub 2018 Jan 13. — View Citation
Lyons C, Callaghan M. Uses and mechanisms of apnoeic oxygenation: a narrative review. Anaesthesia. 2019 Apr;74(4):497-507. doi: 10.1111/anae.14565. Epub 2019 Feb 19. — View Citation
Mir F, Patel A, Iqbal R, Cecconi M, Nouraei SA. A randomised controlled trial comparing transnasal humidified rapid insufflation ventilatory exchange (THRIVE) pre-oxygenation with facemask pre-oxygenation in patients undergoing rapid sequence induction of anaesthesia. Anaesthesia. 2017 Apr;72(4):439-443. doi: 10.1111/anae.13799. Epub 2016 Dec 30. — View Citation
Parke R, McGuinness S, Eccleston M. Nasal high-flow therapy delivers low level positive airway pressure. Br J Anaesth. 2009 Dec;103(6):886-90. doi: 10.1093/bja/aep280. Epub 2009 Oct 20. — View Citation
Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, Frey U. Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J. 2002 Oct;20(4):912-8. doi: 10.1183/09031936.02.00226002. — View Citation
Schibler A, Henning R. Positive end-expiratory pressure and ventilation inhomogeneity in mechanically ventilated children. Pediatr Crit Care Med. 2002 Apr;3(2):124-128. doi: 10.1097/00130478-200204000-00006. — View Citation
Schibler A, Yuill M, Parsley C, Pham T, Gilshenan K, Dakin C. Regional ventilation distribution in non-sedated spontaneously breathing newborns and adults is not different. Pediatr Pulmonol. 2009 Sep;44(9):851-8. doi: 10.1002/ppul.21000. — View Citation
Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care. 2005 May;50(5):604-9. — View Citation
* Note: There are 14 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Apnea success rate | Proportion of patients that succeed in prolongation of apnea time while maintaining pulse oximetry > 92% | From start of apnea to drop of pulse oximetry to 92%, up to 520 seconds | |
Secondary | Apnea time | Time elapsed from start of apnea to resume of bag-mask ventilation | From start of apnea to drop of pulse oximetry to 92%, up to 520 seconds | |
Secondary | End-tidal carbon dioxide | End-tidal carbon dioxide partial pressure of first resumed breath after apnea | After resuming of bag-mask ventilation, up to 30 seconds | |
Secondary | Minimal pulse oximetry | Lowest value of pulse oximetry after resume of bag-mask ventilation | After resuming of bag-mask ventilation, up to 60 seconds | |
Secondary | Time to pulse oximetry of 100 percent | Time elapsed from resume of bag-mask ventilation to regain of 100 percent in the pulse oximetry value | After resuming of bag-mask ventilation, up to 300 seconds | |
Secondary | Electrocardiogram | Appearance of any arrhythmia or prolonged QT interval measured throughout the study | From start of study to end of study, up to 20 min | |
Secondary | Mean blood pressure | Mean non-invasive blood pressure measured throughout the study | From start of study to end of study, up to 20 min | |
Secondary | Pulse oximetry | Pulse oximetry measured throughout the study | From start of study to end of study, up to 20 min | |
Secondary | Oxygen reserve index | Oxygen reserve index measured throughout the study | From start of study to end of study, up to 20 min | |
Secondary | Transcutaneous carbon dioxide | Transcutaneous carbon dioxide level measured throughout the study | From start of study to end of study, up to 20 min | |
Secondary | Heart rate | Heart rate measured throughout the study | From start of study to end of study, up to 20 min |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06063798 -
Respiratory Effects of Flow-Controlled Ventilation and Jet Ventilation in Patients Undergoing Laryngotracheal Surgery
|
N/A | |
Not yet recruiting |
NCT05035069 -
Efficacy and Safety of Ciprofol Compared to Propofol for Nonintubated General Anesthesia in Patients Undergoing TAVR
|
Phase 4 | |
Completed |
NCT03861364 -
Hemodynamics During Induction of General Anesthesia With High and Low Propofol Dose.
|
Phase 4 | |
Completed |
NCT02711280 -
The Effect of Anesthetics on Oxidative Stress and Apoptosis Status in Children
|
N/A | |
Completed |
NCT01199471 -
Estimate the Behavior of Chinese Anesthesiologists Practicing General Anesthesia With Sevoflurane
|
N/A | |
Completed |
NCT00917033 -
Tracheal Intubation of Morbidly Obese Patients. GlideScope Versus Direct Laryngoscopy
|
Phase 4 | |
Completed |
NCT00391885 -
Target-controlled Infusion of Propofol and Remifentanil During General Anaesthesia Guided by Entropy
|
Phase 4 | |
Completed |
NCT00552617 -
A Bridging Trial Comparing Sugammadex (Org 25969) at Reappearance of T2 in Japanese and Caucasian Participants. Part B: Caucasian Participants (P05971)
|
Phase 2 | |
Completed |
NCT03705026 -
Relationship Between Genetic Polymorphism and Postoperative Nausea and Vomiting in Chinese Han Population
|
||
Completed |
NCT00552929 -
A Bridging Trial Comparing Sugammadex (Org 25969) at 1-2 Post-Tetanic Count (PTC) in Caucasian Participants. Part B (P05974)
|
Phase 2 | |
Completed |
NCT00298831 -
Use of Sugammadex at the End of Case in Routine Anesthesia (MK-8616-023)
|
Phase 3 | |
Completed |
NCT00475215 -
Safety and Efficacy of Sugammadex (Org 25969, MK-8616) in Participants With or Having a Past History of Pulmonary Disease (19.4.308) (P05932) (MK-8616-017)
|
Phase 3 | |
Recruiting |
NCT03943745 -
EEG Changes During Induction of Propofol Anesthesia
|
||
Completed |
NCT03697642 -
Nasopharyngeal Airway Guide Nasogastric Tube Placement
|
N/A | |
Completed |
NCT04595591 -
Observation of Propofol Titration at Different Speeds
|
N/A | |
Not yet recruiting |
NCT05841316 -
The ED95 Dose of Sugammadex to Reverse Rocuronium-Induced Deep Neuromuscular Block Back to Shallow Neuromuscular Block
|
||
Completed |
NCT04532502 -
Impact of Anesthetic Environment the Sex Ratio of the Children of Female Assistants
|
||
Completed |
NCT03330236 -
EEG - Guided Anesthetic Care and Postoperative Delirium
|
N/A | |
Recruiting |
NCT06205212 -
High-flow Nasal Oxygenation During Preoxygenation and Atelectasis
|
N/A | |
Completed |
NCT00379613 -
Use of Sugammadex Administered at 5 Minutes After Administration of 1.2 mg/kg Esmeron® (19.4.205)(P05942)
|
Phase 2 |