View clinical trials related to Anaplastic Oligoastrocytoma.
Filter by:Malignant gliomas have a very poor prognosis with median survival measured in months rather than years. It is a disease in great need of novel therapeutic approaches. Based on the encouraging results of our preclinical studies which demonstrate improved efficacy without added toxicity, the paradigm of delivering a novel oncolytic adenovirus via a neural stem cell line in combination with radiation and chemotherapy is well-suited for evaluation in newly diagnosed malignant gliomas. The standard-of-care allows application of virotherapy as neoadjuvant therapy and assessment of the cooperative effects with radiation/chemotherapy without altering the standard treatment.
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex.
This phase I trial studies the side effects and determines the best dose of genetically modified neural stem cells and flucytosine when given together with leucovorin for treating patients with recurrent high-grade gliomas. Neural stem cells can travel to sites of tumor in the brain. The neural stem cells that are being used in this study were genetically modified express the enzyme cytosine deaminase (CD), which converts the prodrug flucytosine (5-FC) into the chemotherapy agent 5-fluorouracil (5-FU). Leucovorin may help 5-FU kill more tumor cells. The CD-expressing neural stem cells are administered directly into the brain. After giving the neural stem cells a few days to spread out and migrate to tumor cells, research participants take a 7 day course of oral 5-FC. (Depending on when a research participant enters the study, they may also be given leucovorin to take with the 5-FC.) When the 5-FC crosses into brain, the neural stem cells convert it into 5-FU, which diffuses out of the neural stem cells to preferentially kill rapidly dividing tumor cells while minimizing toxicity to healthy tissues. A Rickham catheter, placed at the time of surgery, will be used to administer additional doses of NSCs every two weeks, followed each time by a 7 day course of oral 5-FC (and possibly leucovorin). This neural stem cell-based anti-cancer strategy may be an effective treatment for high-grade gliomas. Funding Source - FDA OOPD
This is a multicenter study evaluating the safety and tolerability of Toca 511 administered intravenously to patients with recurrent or progressive Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Patients meeting all of the inclusion and none of the exclusion criteria will receive an initial dose of Toca 511 administered as an intravenous, bolus injection, followed approximately 11 days later by an additional dose injected into the walls of the resection cavity at the time of planned tumor resection. Approximately 6 weeks later, patients will begin treatment with oral Toca FC, an antifungal agent, and repeated every 4 weeks. All patients enrolled in this study will be encouraged to participate in a continuation protocol that enables additional Toca FC administration and the collection of long-term safety and response data.
This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.
The purpose of this study is to determine the efficacy and safety of temozolomide in patient with relapsed or advanced anaplastic oligodendroglioma and anaplastic oligoastrocytoma.
This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.
This is a multicenter study evaluating the safety and tolerability of increasing doses of Toca 511, a retroviral replicating vector, injected into the resection cavity of patients with Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Approximately 6 weeks after injection of Toca 511, patients will begin an oral courses of Toca FC, an antifungal agent. These one week courses of Toca FC will be repeated during the approximately 30 week study. Two separate cohorts of patients treated with Toca 511 and Toca FC will also be evaluated with either of the following standard treatments for glioma: lomustine or bevacizumab. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.
BIBF 1120 is a newly discovered compound that may stop cancer cells from growing abnormally. This drug is currently being used in treatment for other cancers in research studies and information from those other research studies suggests that this agent, BIBF 1120, may help to stop recurrent malignant glioma cells from multiplying and it may also prevent the growth of new blood vessels at the site of the tumor. In this research study, the investigators are looking to see how well BIBF 1120 works in patients with recurrent malignant gliomas.