Clinical Trials Logo

Anaplastic Oligoastrocytoma clinical trials

View clinical trials related to Anaplastic Oligoastrocytoma.

Filter by:

NCT ID: NCT05600491 Recruiting - Glioblastoma Clinical Trials

A Phase III Study of Postoperative Early Temozolomide Treatment Plus STUPP Regimen for Newly Diagnosed GBM Multiforme

Start date: November 8, 2015
Phase: Phase 3
Study type: Interventional

This study was to explore the effectiveness and safety of early TMZ chemotherapy between surgery and chemoradiotherapy plus the standard concomitant radiochemotherapy regimen.

NCT ID: NCT04623931 Recruiting - Glioblastoma Clinical Trials

Chemotherapy and Radiation Therapy for the Treatment of IDH Wildtype Gliomas or Non-histological (Molecular) Glioblastomas

Start date: January 30, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for patients with historically grade II or grade III IDH wild-type gliomas, which may now be referred to as IDH wildtype molecular glioblastomas at some institutions. Receiving temozolomide in combination with radiation therapy may also help to control the disease.

NCT ID: NCT03072134 Completed - Glioma Clinical Trials

Neural Stem Cell Based Virotherapy of Newly Diagnosed Malignant Glioma

Start date: April 24, 2017
Phase: Phase 1
Study type: Interventional

Malignant gliomas have a very poor prognosis with median survival measured in months rather than years. It is a disease in great need of novel therapeutic approaches. Based on the encouraging results of our preclinical studies which demonstrate improved efficacy without added toxicity, the paradigm of delivering a novel oncolytic adenovirus via a neural stem cell line in combination with radiation and chemotherapy is well-suited for evaluation in newly diagnosed malignant gliomas. The standard-of-care allows application of virotherapy as neoadjuvant therapy and assessment of the cooperative effects with radiation/chemotherapy without altering the standard treatment.

NCT ID: NCT03043391 Completed - Glioblastoma Clinical Trials

Phase 1b Study PVSRIPO for Recurrent Malignant Glioma in Children

Start date: November 7, 2017
Phase: Phase 1
Study type: Interventional

The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.

NCT ID: NCT02800486 Recruiting - Glioblastoma Clinical Trials

Super Selective Intra-arterial Repeated Infusion of Cetuximab (Erbitux) With Reirradiation for Treatment of Relapsed/Refractory GBM, AA, and AOA

Start date: May 2016
Phase: Phase 2
Study type: Interventional

Primary brain tumors are typically treated by surgery, radiation therapy and chemotherapy, either individually or in combination. Present therapies are inadequate, as evidenced by the low 5-year survival rate for brain cancer patients, with median survival at approximately 12 months. Glioma is the most common form of primary brain cancer, afflicting approximately 7,000 patients in the United States each year. These highly malignant cancers remain a significant unmet clinical need in oncology. GBM often has a high expression of EFGR (Epidermal Growth Factor Receptor), which is associated with poor prognosis. Several methods of inhibiting this receptor have been tested, including monoclonal antibodies, vaccines, and tyrosine kinase inhibitors. The investigators hypothesize that in patients with recurring GBM, intracranial superselective intra-arterial infusion of Cetuximab (CTX), at a dose of 250mg/m2 in conjunction with hypofractionated radiation, will be safe and efficacious and prevent tumor progression in patients with recurrent, residual GBM.

NCT ID: NCT02795364 Not yet recruiting - Glioma Clinical Trials

Study About the Validity of MRS-guided Resection on Prognosis High-grade Glioma Gliomas

Start date: June 2016
Phase: N/A
Study type: Interventional

Gliomas,especially high-grade glioma ,are the most common primary malignant brain tumor in adults,yet outcomes from this aggressive neoplasm remain dismal.The extent of resection is one of the most essential factors that influence the outcomes of glioma resection.However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. the investigators have finished few project that suggest the feasibility of Magnetic Resonance Spectrum(MRS)-guided resection,unfortunately, lacking sufficient clinical evidence.This prospective cohort study is to provide a clinical evidence for the validity of MRS-guided resection in patients with HGG .

NCT ID: NCT02629757 Recruiting - Glioblastoma Clinical Trials

A Study on β-elemene as Maintain Treatment for Newly Diagnosed Malignant Gliomas

ß-elemene
Start date: April 2015
Phase: Phase 3
Study type: Interventional

This study is being conducted to help determine whether β-elemene as maintain treatment for complete remission patients of newly diagnosed malignant gliomas following standard treatment, is able to delay tumor growth, or impact how long people with newly diagnosed high-grade glioma.

NCT ID: NCT02168270 Terminated - Glioblastoma Clinical Trials

Temozolomide and Ascorbic Acid in Treating Patients With Recurrent High-Grade Glioma

Start date: June 16, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ascorbic acid when given together with temozolomide in treating patients with high-grade glioma that has come back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid contains ingredients that may prevent or slow the growth of high-grade gliomas. Giving temozolomide with ascorbic acid may kill more tumor cells.

NCT ID: NCT02026271 Completed - Clinical trials for Glioblastoma Multiforme

A Study of Ad-RTS-hIL-12 With Veledimex in Subjects With Glioblastoma or Malignant Glioma

Start date: June 2015
Phase: Phase 1
Study type: Interventional

This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex.

NCT ID: NCT02015819 Completed - Adult Glioblastoma Clinical Trials

Genetically Modified Neural Stem Cells, Flucytosine, and Leucovorin for Treating Patients With Recurrent High-Grade Gliomas

Start date: October 7, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and determines the best dose of genetically modified neural stem cells and flucytosine when given together with leucovorin for treating patients with recurrent high-grade gliomas. Neural stem cells can travel to sites of tumor in the brain. The neural stem cells that are being used in this study were genetically modified express the enzyme cytosine deaminase (CD), which converts the prodrug flucytosine (5-FC) into the chemotherapy agent 5-fluorouracil (5-FU). Leucovorin may help 5-FU kill more tumor cells. The CD-expressing neural stem cells are administered directly into the brain. After giving the neural stem cells a few days to spread out and migrate to tumor cells, research participants take a 7 day course of oral 5-FC. (Depending on when a research participant enters the study, they may also be given leucovorin to take with the 5-FC.) When the 5-FC crosses into brain, the neural stem cells convert it into 5-FU, which diffuses out of the neural stem cells to preferentially kill rapidly dividing tumor cells while minimizing toxicity to healthy tissues. A Rickham catheter, placed at the time of surgery, will be used to administer additional doses of NSCs every two weeks, followed each time by a 7 day course of oral 5-FC (and possibly leucovorin). This neural stem cell-based anti-cancer strategy may be an effective treatment for high-grade gliomas. Funding Source - FDA OOPD