View clinical trials related to Anaplastic Ependymoma.
Filter by:The goal of this clinical research study is to learn if the combination of bevacizumab and carboplatin can help to control recurrent ependymoma. The safety of this drug combination will also be studied.
The primary aim of this randomized phase III trial was to study whether the addition of maintenance chemotherapy delivered after surgical resection and focal radiation would be better than surgery and focal radiation alone. The trial also studied if patients who received induction chemotherapy and then either achieved a complete response or went on to have a complete resection would also benefit from maintenance chemotherapy. Children ages 1-21 years with newly diagnosed intracranial ependymoma were included. There were 2 arms that were not randomized. One arm studied patients with Grade II tumors located in the supratentorial compartment that were completely resected. One arm studied patients with residual tumor and those patients all received maintenance chemotherapy after focal radiation. Chemotherapy drugs, such as vincristine sulfate, carboplatin, cyclophosphamide, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Giving chemotherapy in combination with radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started.
RATIONALE: Ritonavir and lopinavir may stop the growth of gliomas by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well giving ritonavir together with lopinavir works in treating patients with progressive or recurrent high-grade glioma.
RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Donor T cells that are treated in the laboratory may be effective treatment for malignant glioma. Aldesleukin may stimulate the white blood cells to kill tumor cells. Combining different types of biological therapies may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best way to give therapeutic donor lymphocytes together with aldesleukin in treating patients with stage III or stage IV malignant glioma.
Primary Objective: - The primary objective is to evaluate the efficacy of photodynamic therapy in the treatment of malignant intracranial tumors. Secondary Objective: - The secondary objective is to evaluate the safety of photodynamic therapy in the treatment of malignant intracranial tumors.