Clinical Trials Logo

Clinical Trial Summary

Weight loss is a common phenomenon in ALS. During the course of the disease, difficulty in swallowing and mastication can be responsible for a decrease in caloric intake and thus for weight loss. However, significant weight loss can also be observed in patients with no feeding difficulties. About half of ALS patients have an increase in their resting energy consumption, but the origin of this "hypermetabolism" remains unknown. "Brown" fat is specialized in the production of heat. Unlike "white" fat that stores excess caloric intakes, brown fat consumes energy. In humans, brown fat has long been considered as absent in adults. However, recent imaging techniques have been able to detect brown fat deposits in some adult subjects. The aim of this study is thus to determine the role of brown fat on energy consumption in Amyotrophic Lateral Sclerosis.


Clinical Trial Description

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving motor neurons of the cerebral cortex, brain stem and spinal cord. Motor neuron loss results in rapidly progressive muscle paralysis, usually leading to death from respiratory failure in 3-5 years. Weight loss is a frequent phenomenon and an independent negative prognostic factor for survival in ALS. Involvement of bulbar muscles with dysphagia is likely to lead to decrease in energy intake resulting in negative energy balance. However, weight loss also occurs in non-dysphagic patients, and is not restricted to reduction in skeletal muscle mass but also involves fat mass reduction. Hypermetabolism (i.e. elevation of resting energy expenditure, REE) have been reported in ALS in about 50% of ALS patients but the origin of this hypermetabolism remains unknown. Increase of REE seems paradoxical in the context of ALS because skeletal muscle mass, which accounts for a large proportion of energy consumption and heat production, is decreased in ALS patients. Brown adipose tissue (BAT) is another important organ for basal and inducible energy expenditure and thermogenesis. In humans, BAT is primarily found in infants and young children, and healthy adults has long been considered as almost devoid of functional BAT. However, a recent study using 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomographic (PET) scan showed that depots of functional BAT were present in about 5% of adult humans, most commonly localized in the cervical-supraclavicular region. In an autopsy series, depots of BAT in the periadrenal region were found in 19/20 ALS patients. It has been estimated that, if present, 50 g of maximally stimulated brown tissue could represent up to 20% of REE expenditure in an adult human. The presence of substantial, functional, depots of BAT could thus participate in the increase of REE observed in ALS patients. The primary objective of this study is to identify and quantify potential depots of functional BAT in ALS patients. Secondary objectives will be to correlate amount of detectable BAT with measured REE, clinical parameters evaluating ALS progression and biological parameters. This study will include 5 patients referred to the Paris ALS center with a diagnosis of ALS and "unexplained" (i.e. not explained by severe dysphagia) loss of 5 percent or more of normal body weight in the last 6 months. 5 ALS patients without significant weight loss will also be included in the study as controls. For each patient, measurement of REE will be performed by indirect calorimetry. The volume and activity of BAT will be determined using 18F-FDG PET whole body scans. Data on concomitant and past disorders (including cancer and diabete mellitus), smoking history, medication use, height, current and normal body weight, age and site of onset of ALS symptoms will be recorded. Functional motor impairment will be assessed using manual muscle testing and the revised ALS Functional Rating Scale as in routine clinical practice. This study will be the first to investigate, using non-invasive procedures, the role of depots of functional BAT in ALS patients' metabolic dysfunction. The results will provide new insights on the origin and consequences of the dysregulation of metabolic homeostasis in ALS. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03150290
Study type Interventional
Source Institut National de la Santé Et de la Recherche Médicale, France
Contact
Status Completed
Phase N/A
Start date October 26, 2017
Completion date April 1, 2019

See also
  Status Clinical Trial Phase
Terminated NCT04428775 - A Safety and Biomarker Study of ALZT-OP1a in Subjects With Mild-Moderate ALS Disease Phase 2
Recruiting NCT04998305 - TJ-68 Clinical Trial in Patients With Amyotrophic Lateral Sclerosis (ALS) and Muscle Cramps Phase 1/Phase 2
Recruiting NCT05951556 - Telehealth Implementation of Brain-Computer Interface N/A
Terminated NCT04579666 - MERIDIAN: A Study to Evaluate the Efficacy and Safety of Pegcetacoplan in Adults With Amyotrophic Lateral Sclerosis (ALS) Phase 2
Recruiting NCT04082832 - CuATSM Compared With Placebo for Treatment of ALS/MND Phase 2/Phase 3
Completed NCT01925196 - Natural History and Biomarkers of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Caused by the C9ORF72 Gene Mutation
Completed NCT02496767 - Ventilatory Investigation of Tirasemtiv and Assessment of Longitudinal Indices After Treatment for a Year Phase 3
Recruiting NCT04816227 - Expression Profile Study of Macrophages From Patients Affected by ALS or Other Related Motor Impairments
Active, not recruiting NCT04494256 - A Study to Assess the Safety, Tolerability, and Effect on Disease Progression of BIIB105 in Participants With Amyotrophic Lateral Sclerosis (ALS) and Participants With the ALS Ataxin-2 (ATXN2) Genetic Mutation Phase 1/Phase 2
Completed NCT03706391 - Study of ALS Reversals 4: LifeTime Exposures
Recruiting NCT04882904 - Continuous Measurement of Activity in Patients With Muscle Pathology and in Control Subjects. ActiSLA Part. N/A
Completed NCT04557410 - Open Label Study: Treatment of ALS Fatigue With PolyMVA Phase 1
Active, not recruiting NCT04948645 - A Phase 1 Study to Investigate the Safety and Pharmacokinetics of ABBV-CLS-7262 in Patients With Amyotrophic Lateral Sclerosis Phase 1
Not yet recruiting NCT04089696 - Validation of the "ExSpiron©" in Patients With ALS N/A
Not yet recruiting NCT06450691 - Modeling Amyotrophic Lateral Sclerosis With Fibroblasts N/A
Not yet recruiting NCT04220190 - RAPA-501 Therapy for ALS Phase 2/Phase 3
Not yet recruiting NCT05860244 - Effect of Salbutamol on Walking Capacity in Ambulatory ALS Patients Phase 2
Recruiting NCT02917681 - Study of Two Intrathecal Doses of Autologous Mesenchymal Stem Cells for Amyotrophic Lateral Sclerosis Phase 1/Phase 2
Active, not recruiting NCT03067857 - Autologous Bone Marrow-Derived Stem Cell Therapy for Motor Neuron Disease Phase 1/Phase 2
Recruiting NCT02874209 - Noninvasive Assessment of Neuronal Damage by MRI Sodium ( 23Na ) in Amyotrophic Lateral Sclerosis N/A