Clinical Trials Logo

Clinical Trial Summary

The e-OPRA Implant System, is a further development of the OPRA (Osseointegrated Prostheses for the Rehabilitation of Amputees) Implant System. The e-OPRA Implant system is an implant system for direct skeletal anchorage of amputation prostheses. The added feature in the e-OPRA Implant system, is a bidirectional interface into the human body that allows permanent and reliable communication using implanted electrodes. These electrodes will provide long-term stable bioelectric signals for an improved control of the prosthetic limb. The Magnetic Bead Tracking System, which will be implanted and used in combination with the e-OPRA Implant system, is an investigational device that consists of pairs of magnetic beads, and a set of magnetic field sensors that measure and track the length of muscles and the speed at which they move in real-time. When the beads are implanted in muscle in the residual limb of an amputee, the muscle length signal is communicated to an investigational, robotic ankle-foot prosthesis. The purpose of the study is to evaluate the feasibility of a transtibial amputee with the e-OPRA Implant System and Magnetic Bead Tracking System exhibiting full neural control over a neuro-mechanical prosthetic system. A maximum of seven subjects will be enrolled. Each subject will undergo one or more surgeries where the e-OPRA Implant System and Magnetic Bead Tracking System will be implanted. The subjects will participate in follow-up sessions the last of which occurs approximately 24 months after the surgery. This is a prospective, non-randomized, uncontrolled study.


Clinical Trial Description

Normalization of function for individuals with limb amputation is within reach, and will be achieved by smart implants capable of bi-directional communication between brain and machine via bone-anchored, interactive, powered prosthetic components. Rehabilitation of patients with expected high physical activity level, such as after amputation due to trauma or cancer, is currently limited by dependence on an external socket for the mechanical attachment of the prosthesis to the residuum. Despite the use of advanced materials and fabrication methods, socket interfaces routinely cause sores, chafing, pain, increased energy expenditure, and a decreased quality of life. Novel surgical techniques using osseointegrated transdermal titanium implants, now validated in Europe for over 25 years, obviate the need for painful sockets by establishing a direct, load-bearing link between skeleton and prosthesis. This system also promises a transformative breakthrough in neuroprosthetics, because it allows for fully internal, high bandwidth, stable neural connections. In a paper recently published in Science Translational Medicine, implanted muscle and nerve cuff electrodes were added to the osseointegrated device, creating a bi- directional efferent-afferent interface utilizing a safe and immune-sealed osseo-conduit. Commenting on this work, the editor stated, "Osseointegration could revolutionize the field of neuroprosthetics, giving patients more intuitive control and more freedom of movement." Investigators have sought to advance bionic prostheses with sufficient degrees of freedom for performing natural tasks, such as manipulating objects in the case of upper-extremity prostheses, or walking and running for lower-extremity systems. Nonetheless, afferent feedback has not played a major role in any clinically-viable amputation prostheses, despite being critical for biomimetic control. This deficiency can, in large part, be attributed to a lack of clinically-available methodologies for sustained communication with the peripheral nervous system. There is no existing platform capable of invasive, robust, and permanent communication with the peripheral nervous system in a high-demand clinical set- ting. Only by bringing together critical technologies and expertise will it be possible to create a bionic limb replacement system with adequate suspension, load transmission, motor control, proprioceptive feedback, and external mechatronics that resemble the mass, volume and dynamics of the missing biological limb. To develop the most advanced clinically- viable artificial limb and achieve the next level of prosthetic technology integration, a multi-disciplinary scientific team has been assembled with members from Massachusetts Institute of Technology (MIT: Carty, Herr, Brånemark) and Brigham and Women's Hospital (BWH: Carty, Ferrone). With proprioceptive afferent feedback, we seek to demonstrate that a person with transtibial amputation can exhibit full volitional control over a neuro-mechanical prosthetic system where key walking metrics are normalized, including preferred speed, metabolism and joint dynamics. It is the view of the proposers that the scope of this research is fundamental wherein the results will be shared broadly within the scientific community. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06391697
Study type Interventional
Source Brigham and Women's Hospital
Contact Matthew J Carty, MD
Phone 6179834555
Email mcarty@bwh.harvard.edu
Status Not yet recruiting
Phase N/A
Start date May 1, 2024
Completion date May 1, 2028

See also
  Status Clinical Trial Phase
Recruiting NCT03947450 - Autologous Volar Fibroblast Injection Into the Stump Site of Amputees Phase 2
Completed NCT04924036 - Qbrexza Cloths for Hyperhidrosis of Amputation Sites Phase 2
Recruiting NCT04839497 - Multicenter Trial Evaluating the Safety and Efficacy of Autologous Volar Fibroblast Injection Into the Terminal Limb of Amputees. Phase 2
Recruiting NCT04212299 - Transfemoral Socket Design and Muscle Function N/A
Completed NCT03733054 - Understanding Prosthetic Needs and Outcomes in Women Veterans With Amputation
Completed NCT03651830 - A Test-Drive Strategy for the Prescription of Prosthetic Feet for People With Leg Amputations N/A
Recruiting NCT04725006 - Sensory Responses to Dorsal Root Stimulation N/A
Not yet recruiting NCT06007885 - Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention. N/A
Not yet recruiting NCT04936789 - Clinical Feasibility of the IMES Transradial Prosthesis N/A
Completed NCT01155024 - Clinical Evaluation of Direct Manufactured Prosthetic Sockets Phase 2
Completed NCT00663663 - Telephone Intervention for Pain Study (TIPS) N/A
Terminated NCT00778856 - Hand Transplantation for the Reconstruction of Below the Elbow Amputations N/A
Recruiting NCT00388752 - Acupuncture for the Treatment of Phantom Limb and Residual Limb Pain After Amputation Phase 1
Active, not recruiting NCT03374319 - Somatotopic Configuration of Distal Residual Limb Tissues in Lower Extremity Amputations N/A
Completed NCT05542901 - Comparison of Joint Position Sense in Diabetic and Traumatic Transtibial Amputees N/A
Completed NCT05161364 - Kinetic Analysis Due to Foot Dysfunction
Recruiting NCT06194838 - Clinical Outcomes With Non-Powered vs. Powered Prosthetic Knees by K2-level Amputees N/A
Completed NCT03570788 - HRQoL Among Patients Amputated Due to Peripheral Arterial Disease
Completed NCT05778799 - Physical Activity and Sports for People With Special Needs
Recruiting NCT04804150 - Daily Socket Comfort in Transtibial Amputee With an Active Vacuum Suspension System N/A