Amputation Clinical Trial
Official title:
The Effects of Targeted Phantom Motor Execution, Prosthetic Embodiment, and Surgical Closure on Phantom Limb Control, and Physical Function in People With Unilateral (Single) Transtibial (Below-the-knee) Amputation
NCT number | NCT05247827 |
Other study ID # | Bio 2855 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | June 1, 2022 |
Est. completion date | May 1, 2023 |
Verified date | December 2023 |
Source | University of Saskatchewan |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Lower limb amputations account for more than 85% of all amputations. In Canada, it has been reported that transtibial amputation (TTA) is the most common level of amputation. Many people with limb amputation have awareness and feel that their missing limb still exists (phantom limb), with perceptions of sensation or pain, and the ability to move the limb with or without intention. Phantom limb sensation (PLS) is defined as all non-painful somatic sensations (e.g. sense of the limb position, touch, pressure, warmth or cold, or movement) in the missing part of the limb. The incidence of PLS is about 60% in adults after 17 months. In addition to PLS, 60-70% of people with amputation experience phantom limb pain (PLP), an intense chronic pain perception in their phantom limb, in the first year after amputation. Although PLP is well known to decrease the quality of life and lessen function, little is known about PLS and phantom limb control (PLC), the ability to intentionally move or control movements of the phantom limb. Enhancing PLS and PLC especially in the immediate months after amputation, could decrease painful perception, facilitate prosthetic control, and improve the function of people with amputations. Keeping this therapeutic and rehabilitative significance in mind, it is hypothesized that a targeted program of phantom motor execution, designed to address phantom limb awareness (PLA), the general knowledge of the presence or existence of the missing limb as one's own, could be associated with improving PLC in people with TTA. Furthermore, prosthetic embodiment, the sense that the prosthesis is accepted as a part of the body with the same functional abilities, may play a role in PLC. Investigating the association of PLC, as one of the phantom phenomena (i.e. PLA, PLS, PLP, and PLC), with surgical, clinical, and demographic characteristics of people with TTA will provide better insight into how phantom phenomena develop. The association of PLC with physical function has significant clinical importance that has never been investigated in people with TTA.
Status | Completed |
Enrollment | 30 |
Est. completion date | May 1, 2023 |
Est. primary completion date | March 1, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. 18 years of age or older 2. Amputation surgery in Manitoba 3. Amputation surgery at least 6 months ago 4. Unilateral TTA 5. Existence of mature and wound-free residual limb 6. Experience of walking with a prosthesis for at least five months 7. Having contralateral healthy foot with no wounds, ulcers, abrasions, or loss of toes 8. Ability to walk independently for two minutes with/without an assistive device 9. Presence of PLA 10. Ability to read, write, and understand instructions and questionnaires in English 11. Have the dexterity to use a computer, tablet, or smartphone and the ability to communicate through Zoom application. Exclusion Criteria: 1. Existence of psychological or psychiatric conditions (e.g. depression or anxiety) that negatively impact daily life 2. Addiction to alcohol or drug 3. Any medical condition that might conceivably alter how a person perceives the body or their ability to execute movements 4. Inability to move the intact limb at the foot and ankle joints 5. Fluctuating doses of pain suppressing medications in the previous month 6. Receiving formal training on exercising phantom limb 7. Existence of severe pain that limits activity 8. Undergoing prosthetic adjustments (e.g. in socket fit, components, alignment) in the past five months or plan to have prosthetic adjustments over the study period |
Country | Name | City | State |
---|---|---|---|
Canada | Winnipeg Prosthetics and Orthotics (WinPO) Clinic | Winnipeg | Manitoba |
Lead Sponsor | Collaborator |
---|---|
University of Saskatchewan | University of Manitoba |
Canada,
Bekrater-Bodmann R, Reinhard I, Diers M, Fuchs X, Flor H. Relationship of prosthesis ownership and phantom limb pain: results of a survey in 2383 limb amputees. Pain. 2021 Feb 1;162(2):630-640. doi: 10.1097/j.pain.0000000000002063. — View Citation
Brodie EE, Whyte A, Niven CA. Analgesia through the looking-glass? A randomized controlled trial investigating the effect of viewing a 'virtual' limb upon phantom limb pain, sensation and movement. Eur J Pain. 2007 May;11(4):428-36. doi: 10.1016/j.ejpain.2006.06.002. Epub 2006 Jul 20. — View Citation
Dijkstra PU, Geertzen JH, Stewart R, van der Schans CP. Phantom pain and risk factors: a multivariate analysis. J Pain Symptom Manage. 2002 Dec;24(6):578-85. doi: 10.1016/s0885-3924(02)00538-9. — View Citation
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006 Nov;7(11):873-81. doi: 10.1038/nrn1991. — View Citation
Geertzen JHB, van der Schans SM, Jutte PC, Kraeima J, Otten E, Dekker R. Myodesis or myoplasty in trans-femoral amputations. What is the best option? An explorative study. Med Hypotheses. 2019 Mar;124:7-12. doi: 10.1016/j.mehy.2019.01.008. Epub 2019 Jan 16. No abstract available. — View Citation
Hunter JP, Katz J, Davis KD. Stability of phantom limb phenomena after upper limb amputation: a longitudinal study. Neuroscience. 2008 Oct 28;156(4):939-49. doi: 10.1016/j.neuroscience.2008.07.053. Epub 2008 Aug 3. — View Citation
Hunter JP, Katz J, Davis KD. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain. 2003 Mar;126(Pt 3):579-89. doi: 10.1093/brain/awg054. — View Citation
Imam B, Miller WC, Finlayson HC, Eng JJ, Jarus T. Incidence of lower limb amputation in Canada. Can J Public Health. 2017 Nov 9;108(4):e374-e380. doi: 10.17269/cjph.108.6093. — View Citation
Kilteni K, Groten R, Slater M. The Sense of Embodiment in Virtual Reality. Presence: Teleoperators and Virtual Environments. 2012; 21(4): 373-387.
Krutki P, Mrowczynski W, Baczyk M, Lochynski D, Celichowski J. Adaptations of motoneuron properties after weight-lifting training in rats. J Appl Physiol (1985). 2017 Sep 1;123(3):664-673. doi: 10.1152/japplphysiol.00121.2017. Epub 2017 Jun 8. — View Citation
Marshall HM, Jensen MP, Ehde DM, Campbell KM. Pain site and impairment in individuals with amputation pain. Arch Phys Med Rehabil. 2002 Aug;83(8):1116-9. doi: 10.1053/apmr.2002.33121. — View Citation
Matjacic Z, Burger H. Dynamic balance training during standing in people with trans-tibial amputation: a pilot study. Prosthet Orthot Int. 2003 Dec;27(3):214-20. doi: 10.1080/03093640308726684. — View Citation
Montoya P, Larbig W, Grulke N, Flor H, Taub E, Birbaumer N. The relationship of phantom limb pain to other phantom limb phenomena in upper extremity amputees. Pain. 1997 Aug;72(1-2):87-93. doi: 10.1016/s0304-3959(97)00004-3. — View Citation
Moseley GL, Brugger P. Interdependence of movement and anatomy persists when amputees learn a physiologically impossible movement of their phantom limb. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18798-802. doi: 10.1073/pnas.0907151106. Epub 2009 Oct 26. — View Citation
Ortiz-Catalan M, Guethmundsdottir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, Widehammar C, Eriksson K, Stockselius A, Ragno C, Pihlar Z, Burger H, Hermansson L. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016 Dec 10;388(10062):2885-2894. doi: 10.1016/S0140-6736(16)31598-7. Epub 2016 Dec 2. — View Citation
Rudy TE, Lieber SJ, Boston JR, Gourley LM, Baysal E. Psychosocial predictors of physical performance in disabled individuals with chronic pain. Clin J Pain. 2003 Jan-Feb;19(1):18-30. doi: 10.1097/00002508-200301000-00003. — View Citation
Schafer ZA, Perry JL, Vanicek N. A personalised exercise programme for individuals with lower limb amputation reduces falls and improves gait biomechanics: A block randomised controlled trial. Gait Posture. 2018 Jun;63:282-289. doi: 10.1016/j.gaitpost.2018.04.030. Epub 2018 Apr 30. — View Citation
Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010 Oct;24(10):2857-72. doi: 10.1519/JSC.0b013e3181e840f3. — View Citation
Sin EI, Thong SY, Poon KH. Incidence of phantom limb phenomena after lower limb amputations in a Singapore tertiary hospital. Singapore Med J. 2013 Feb;54(2):75-81. doi: 10.11622/smedj.2013028. — View Citation
Srinivasan SS, Gutierrez-Arango S, Teng AC, Israel E, Song H, Bailey ZK, Carty MJ, Freed LE, Herr HM. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc Natl Acad Sci U S A. 2021 Mar 2;118(9):e2019555118. doi: 10.1073/pnas.2019555118. — View Citation
Stankevicius A, Wallwork SB, Summers SJ, Hordacre B, Stanton TR. Prevalence and incidence of phantom limb pain, phantom limb sensations and telescoping in amputees: A systematic rapid review. Eur J Pain. 2021 Jan;25(1):23-38. doi: 10.1002/ejp.1657. Epub 2020 Sep 28. — View Citation
Trevelyan EG, Turner WA, Robinson N. Perceptions of phantom limb pain in lower limb amputees and its effect on quality of life: a qualitative study. Br J Pain. 2016 May;10(2):70-7. doi: 10.1177/2049463715590884. Epub 2015 Jun 23. — View Citation
Yaghi K, Yaghi Y, McDonald AA, Yadegarfar G, Cecil E, Seidl J, Dubois E, Rawaf S, Majeed A. Diabetes or war? Incidence of and indications for limb amputation in Lebanon, 2007. East Mediterr Health J. 2012 Dec;18(12):1178-86. — View Citation
* Note: There are 23 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Phantom limb control as measured by EMG patterning | The ability to intentionally move or control movements of the phantom limb | 1 year (March 2022 - March 2023) | |
Primary | Prosthetic embodiment as measured by "Trinity Amputation and Prosthesis Experience Scales-Revised (TAPES-R)" | The sense that people with limb amputation feel that their prosthesis is integrated to their body and acts like their limb before amputation | 1 year (March 2022 - March 2023) | |
Primary | Prosthetic embodiment as measured by "Prosthesis Embodiment Scale for Lower Limb Amputees (PEmbS-LLA)" | The sense that people with limb amputation feel that their prosthesis is integrated to their body and acts like their limb before amputation | 1 year (March 2022 - March 2023) | |
Primary | Time score for four-square step test (s) | The fastest time required to pass through a sequence of 4 squares without touching the two crossing sticks that make those 4 squares. Both feet must make contact with the floor in each square while the person is face forward during the entire test. | 1 year (March 2022 - March 2023) | |
Secondary | Amplitude of electromyography (EMG) of the agonist and antagonist muscles's activity | The maximum voltage of the EMG signal during activity of the agonist and antagonist muscles (i.e. Tibialis anterior, and Medial and Lateral Gastrocnemius) during targeted phantom motor executions | 1 year (March 2022 - March 2023) | |
Secondary | Frequency of electromyography (EMG) of the agonist and antagonist muscles's activity | The rate of EMG signal oscillation during activity of the agonist and antagonist muscles (i.e. Tibialis anterior, and Medial and Lateral Gastrocnemius) during targeted phantom motor executions | 1 year (March 2022 - March 2023) | |
Secondary | Index of electromyography (EMG) co-activation of the agonist and antagonist muscles | The amount of closeness of the EMG signal frequency of the agonist muscles to that of the antagonist muscles (the rate of EMG frequency of the agonist to that of the antagonist muscles' activity) during targeted phantom motor executions | 1 year (March 2022 - March 2023) | |
Secondary | Foot plantar load (N) | The measured load under the heel, midfoot, and toes of the foot during targeted phantom motor execution when measured by Loadsol insoles | 1 year (March 2022 - March 2023) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03947450 -
Autologous Volar Fibroblast Injection Into the Stump Site of Amputees
|
Phase 2 | |
Completed |
NCT04924036 -
Qbrexza Cloths for Hyperhidrosis of Amputation Sites
|
Phase 2 | |
Recruiting |
NCT04839497 -
Multicenter Trial Evaluating the Safety and Efficacy of Autologous Volar Fibroblast Injection Into the Terminal Limb of Amputees.
|
Phase 2 | |
Recruiting |
NCT04212299 -
Transfemoral Socket Design and Muscle Function
|
N/A | |
Completed |
NCT03733054 -
Understanding Prosthetic Needs and Outcomes in Women Veterans With Amputation
|
||
Completed |
NCT03651830 -
A Test-Drive Strategy for the Prescription of Prosthetic Feet for People With Leg Amputations
|
N/A | |
Recruiting |
NCT04725006 -
Sensory Responses to Dorsal Root Stimulation
|
N/A | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT04936789 -
Clinical Feasibility of the IMES Transradial Prosthesis
|
N/A | |
Completed |
NCT01155024 -
Clinical Evaluation of Direct Manufactured Prosthetic Sockets
|
Phase 2 | |
Completed |
NCT00663663 -
Telephone Intervention for Pain Study (TIPS)
|
N/A | |
Terminated |
NCT00778856 -
Hand Transplantation for the Reconstruction of Below the Elbow Amputations
|
N/A | |
Recruiting |
NCT00388752 -
Acupuncture for the Treatment of Phantom Limb and Residual Limb Pain After Amputation
|
Phase 1 | |
Active, not recruiting |
NCT03374319 -
Somatotopic Configuration of Distal Residual Limb Tissues in Lower Extremity Amputations
|
N/A | |
Completed |
NCT05542901 -
Comparison of Joint Position Sense in Diabetic and Traumatic Transtibial Amputees
|
N/A | |
Completed |
NCT05161364 -
Kinetic Analysis Due to Foot Dysfunction
|
||
Recruiting |
NCT06194838 -
Clinical Outcomes With Non-Powered vs. Powered Prosthetic Knees by K2-level Amputees
|
N/A | |
Completed |
NCT03570788 -
HRQoL Among Patients Amputated Due to Peripheral Arterial Disease
|
||
Completed |
NCT05778799 -
Physical Activity and Sports for People With Special Needs
|
||
Recruiting |
NCT04804150 -
Daily Socket Comfort in Transtibial Amputee With an Active Vacuum Suspension System
|
N/A |