Clinical Trials Logo

Clinical Trial Summary

This is a repeated measures prospective study and is no greater than a minimal risk study. All study procedures will be conducted at the Center for the Intrepid (CFI) through collaborative efforts of the Military Performance Lab at the CFI and the Sanders lab at the University of Washington. Data collected at the CFI will be coded, compiled, and shared with the University of Washington investigators.The objective of the research is to test if microprocessor-adjusting sockets improve Service member performance in Military specific activities compared to (a) user- operated, motor-driven adjustable sockets (i.e. sockets users adjust themselves), and (b) static (traditional) sockets. Investigators also test if microprocessor-adjusting sockets better maintain socket fit and limb fluid volume, and if self-reported outcomes are more favorable than for user-operated or static sockets. The hypotheses to be tested include: During intense Military specific tasks, compared to the user-adjusted socket and the static socket, the microprocessor-adjusting socket will: 1. minimize translational movement between the residual limb and the prosthetic socket; 2. maintain residual limb fluid volume; and 3. maximize prosthetic socket comfort. When using the microprocessor-adjusting socket compared to the user-adjusted socket and the static socket, participants will: 1. cover the greatest distance during a simulated combat patrol; 2. perform all high intensity Military specific tasks with less pain; 3. perform a simulated combat patrol nearer to uninjured levels of performance; and 4. rank usability at a level similar to the static socket. The specific aims are to: 1. Fabricate microprocessor-adjusting sockets specific for Service members and Veterans with goals of returning to high-level physical activities 2. Evaluate Military task performance in Service members with transtibial amputation using "Readiness Assessments," while wearing three socket configurations: microprocessor-adjusting, user-adjusting, and static - Simulated combat patrol in a Virtual Realty Environment - Military version of a Functional Capacity Evaluation 3. Characterize user preference and usability of different socket configurations


Clinical Trial Description

The purpose of the proposed research is to evaluate the use of microprocessor-adjusting sockets during "Readiness Assessments" of Military tasks performed by Service members with transtibial amputation. Participants will come to the Center For the Intrepid (CFI) for up to 10 visits to complete a pre-monitoring session (assess residual limb health and gather information regarding limb fluid volume); socket fitting session(s) (fitting of three sockets- static socket, a user-adjusted socket, and microprocessor-adjusting socket); and for military readiness assessments for each of the three socket conditions. Data across the three socket conditions (static socket, user adjusted socket, and Microprocessor-adjusting sockets) will be tested for normality. When it normality can be assumed, a single factor repeated measures ANOVA will test between socket conditions. Mauchly's Test of Sphericity was be used to test if the variance is significantly different across all of the conditions. If the sphericity condition is violated, a Greenhouse-Geisser adjustment will be applied. When a significance effect is detected, pairwise comparisons using a Tukey post-hoc will be performed to determine which conditions are significantly different. When normality cannot be assumed, a Kruskal-Wallis H test will be used. When a significance effect is detected, pairwise comparisons using a Mann-Whitney post-hoc while adjusting the p-value for multiple comparisons will be performed to determine which conditions are significantly different. Statistical significance will be set to p<0.05 ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04494555
Study type Interventional
Source Brooke Army Medical Center
Contact Molly Baumann, PhD
Phone 6144297945
Email molly.baumann.civ@mail.mil
Status Recruiting
Phase N/A
Start date November 4, 2020
Completion date August 14, 2023

See also
  Status Clinical Trial Phase
Completed NCT03544853 - Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets N/A
Not yet recruiting NCT03948087 - Comparison Between Postoperative Tubular Dressing and a Vacuum Removable Rigid Dressing After Transtibial Amputation N/A
Completed NCT05124873 - Moisture Management Liner At-Home Evaluation N/A
Completed NCT04709367 - Characterization of Residual Limb Volume Changes in Transfemoral Amputees
Completed NCT02436148 - Reliability and Validity of the Finnish Version of the Prothesis Evaluation Questionnaire N/A
Completed NCT05247827 - The Effects of Targeted Phantom Motor Execution on Phantom Limb Control N/A
Recruiting NCT06255288 - Time to Heal (Wound, Healing, Dialogue, Nutrition) N/A
Recruiting NCT02280733 - A Real World, Observational Registry of Chronic Wounds and Ulcers
Recruiting NCT06258343 - Extremity Thermographic Values in Individuals With Transtibial Amputation
Completed NCT04484805 - Socket Cooling Effectiveness Take Home Study N/A