Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05081219
Other study ID # IRB00075245
Secondary ID
Status Recruiting
Phase Phase 2
First received
Last updated
Start date October 14, 2021
Est. completion date October 2028

Study information

Verified date October 2023
Source Wake Forest University Health Sciences
Contact Deborah Dahl, RN
Phone 336-713-3432
Email ddahl@wakehealth.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The proposed pilot study will provide safety and efficacy preliminary data regarding singular and combined effects of two therapeutic approaches, intranasal insulin and treatment with the sodium-glucose cotransporter type 2 inhibitor (SGLT2i) empagliflozin, to correct bioenergetic and vascular dysfunction in adults with preclinical Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) or early AD.


Description:

The study will consist of a single site, randomized, double-blind trial comparing the effects of 4 weeks of intranasal insulin(40 International Units four times daily), empagliflozin (10 mg daily) and combined intranasal insulin (INI) and empagliflozin (empa) compared with placebo on cerebrospinal fluid (CSF) biomarkers and cognition. At study entry, participants will be randomized to one of 4 conditions: INI, empa, INI+empa or placebo. Participants who are cognitively normal but have abnormal elevations of brain amyloid or who have mild cognitive impairment (MCI) or early Alzheimer's disease (AD) will be enrolled. The primary outcome measure will consist of safety (treatment-related serious adverse events). Secondary outcome measures will consist of cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral blood flow.


Recruitment information / eligibility

Status Recruiting
Enrollment 60
Est. completion date October 2028
Est. primary completion date October 2026
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 55 Years to 85 Years
Eligibility Inclusion Criteria: 1. Age 55 to 85 (inclusive) 2. Fluent in English 3. Cognitively normal or diagnosis of amnestic mild cognitive impairment (aMCI) or mild Alzheimer's disease (AD) 4. Amyloid positive by positron emission tomography (PET) or cerebrospinal fluid (CSF) criteria 5. Stable medical condition for 3 months prior to screening visit 6. Stable medications for 4 weeks prior to the screening and study visits (exceptions may be made on a case by case basis by the study physician) 7. Clinical laboratory values must be within normal limits or, if abnormal, must be judged to be clinically insignificant by the study physician Exclusion Criteria: 1. A diagnosis of dementia other than Alzheimer's disease (AD) 2. History of a clinically significant stroke 3. Current evidence or history in past two years of epilepsy, head injury with loss of consciousness, any major psychiatric disorder including psychosis, major depression, bipolar disorder 4. Diabetes (type I or type II) insulin-dependent and non-insulin-dependent diabetes mellitus 5. Current or past regular use of insulin or any other anti-diabetic medication within 2 months of screening visit 6. History of seizure within past five years 7. Pregnancy or possible pregnancy 8. Use of anticoagulants, unless documentation received from prescribing clinician that anticoagulant medication can be held before LP, and approved by study clinician 9. Residence in a skilled nursing facility at screening 10. Use of an investigational agent within two months of screening visit 11. Regular use of alcohol, narcotics, anticonvulsants, anti-parkinsonian medications, or any other exclusionary medications (exceptions may be made on a case by case basis by the study physician)

Study Design


Intervention

Drug:
Insulin (Humulin® R U-100)
Participants will administer 40 IU of Humulin® U-100 insulin four times per day with an intranasal delivery device.
Empagliflozin 10 MG
Participants will be assigned to receive Empagliflozin 10 mg capsules to be taken by mouth once daily.
Device:
Aptar Pharma CPS Intranasal Delivery Device
Participants will be assigned to receive Humulin® insulin or placebo administered through the Aptar Pharma CPS intranasal delivery device.
Drug:
Placebo (Insulin Diluent)
Participants will administer placebo (insulin diluent) four times per day with an intranasal delivery device.
Placebo (Capsules)
Participants will be assigned to receive placebo capsules (Empagliflozin 10 mg) to be taken by mouth once daily.

Locations

Country Name City State
United States Wake Forest University Health Sciences / Wake Forest School of Medicine Winston-Salem North Carolina

Sponsors (1)

Lead Sponsor Collaborator
Wake Forest University Health Sciences

Country where clinical trial is conducted

United States, 

References & Publications (52)

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270-9. doi: 10.1016/j.jalz.2011.03.008. Epub 2011 Apr 21. — View Citation

Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986;63(3):461-73. doi: 10.1007/BF00237470. — View Citation

Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011 Jan;68(1):51-7. doi: 10.1001/archneurol.2010.225. Epub 2010 Sep 13. — View Citation

Balin BJ, Broadwell RD, Salcman M, el-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986 Sep 8;251(2):260-80. doi: 10.1002/cne.902510209. — View Citation

Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004 Nov;29(10):1326-34. doi: 10.1016/j.psyneuen.2004.04.003. — View Citation

Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008 Apr;93(4):1339-44. doi: 10.1210/jc.2007-2606. Epub 2008 Jan 29. — View Citation

Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002 Jun;5(6):514-6. doi: 10.1038/nn849. No abstract available. — View Citation

Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol. 1985 Dec 22;242(4):632-50. doi: 10.1002/cne.902420410. — View Citation

Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006 Mar;129(Pt 3):564-83. doi: 10.1093/brain/awl004. Epub 2006 Jan 6. — View Citation

Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008 Jun 12;58(5):708-19. doi: 10.1016/j.neuron.2008.04.014. — View Citation

Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012 Jan;69(1):29-38. doi: 10.1001/archneurol.2011.233. Epub 2011 Sep 12. — View Citation

Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998 Jan;50(1):164-8. doi: 10.1212/wnl.50.1.164. — View Citation

Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 2004 Mar;3(3):169-78. doi: 10.1016/S1474-4422(04)00681-7. — View Citation

De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1971-6. doi: 10.1073/pnas.0809158106. Epub 2009 Feb 2. Erratum In: Proc Natl Acad Sci U S A. 2009 May 5;106(18):7678. — View Citation

Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ, Cook DG, Peskind ER, Baker LD, Goldgaber D, Nie W, Asthana S, Plymate SR, Schwartz MW, Craft S. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol. 2005 Oct;62(10):1539-44. doi: 10.1001/archneur.62.10.noc50112. — View Citation

Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008 Dec;131(Pt 12):3311-34. doi: 10.1093/brain/awn288. Epub 2008 Nov 16. — View Citation

Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm (Vienna). 1998;105(4-5):423-38. doi: 10.1007/s007020050068. — View Citation

Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, Ferris S. An inventory to assess activities of daily living for clinical trials in Alzheimer's disease. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl 2:S33-9. — View Citation

Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci. 2001 Apr 15;21(8):2561-70. doi: 10.1523/JNEUROSCI.21-08-02561.2001. — View Citation

Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M, Ramirez MJ, Cedazo-Minguez A. Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease. J Alzheimers Dis. 2010;22(2):405-13. doi: 10.3233/JAD-2010-100795. — View Citation

Hallschmid M, Benedict C, Schultes B, Born J, Kern W. Obese men respond to cognitive but not to catabolic brain insulin signaling. Int J Obes (Lond). 2008 Feb;32(2):275-82. doi: 10.1038/sj.ijo.0803722. Epub 2007 Sep 11. — View Citation

Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 1997 Aug 1;272(31):19547-53. doi: 10.1074/jbc.272.31.19547. — View Citation

Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982 Jun;140:566-72. doi: 10.1192/bjp.140.6.566. — View Citation

Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002 Dec 1;7(23):1184-9. doi: 10.1016/s1359-6446(02)02529-1. — View Citation

Kern W, Born J, Schreiber H, Fehm HL. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes. 1999 Mar;48(3):557-63. doi: 10.2337/diabetes.48.3.557. — View Citation

Kristensson K, Olsson Y. Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol. 1971;19(2):145-54. doi: 10.1007/BF00688493. No abstract available. — View Citation

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. doi: 10.1046/j.1525-1497.2001.016009606.x. — View Citation

Kupila A, Sipila J, Keskinen P, Simell T, Knip M, Pulkki K, Simell O. Intranasally administered insulin intended for prevention of type 1 diabetes--a safety study in healthy adults. Diabetes Metab Res Rev. 2003 Sep-Oct;19(5):415-20. doi: 10.1002/dmrr.397. — View Citation

Lee CC, Kuo YM, Huang CC, Hsu KS. Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging. 2009 Mar;30(3):377-87. doi: 10.1016/j.neurobiolaging.2007.06.014. Epub 2007 Aug 10. — View Citation

Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995 Jul-Aug;19(4):541-7. doi: 10.1097/00004728-199507000-00006. — View Citation

Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994 Sep;35(9):1528-37. — View Citation

Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Thal LJ, Woodbury P. Clinical dementia rating training and reliability in multicenter studies: the Alzheimer's Disease Cooperative Study experience. Neurology. 1997 Jun;48(6):1508-10. doi: 10.1212/wnl.48.6.1508. — View Citation

Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001 Dec;58(12):1985-92. doi: 10.1001/archneur.58.12.1985. — View Citation

Pontiroli AE, Alberetto M, Secchi A, Dossi G, Bosi I, Pozza G. Insulin given intranasally induces hypoglycaemia in normal and diabetic subjects. Br Med J (Clin Res Ed). 1982 Jan 30;284(6312):303-6. doi: 10.1136/bmj.284.6312.303. — View Citation

Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006 Mar;27(3):451-8. doi: 10.1016/j.neurobiolaging.2005.03.016. Epub 2005 Jun 16. — View Citation

Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH 2nd, Craft S. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008 Apr;13(3):323-31. doi: 10.3233/jad-2008-13309. — View Citation

Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008 Feb 5;70(6):440-8. doi: 10.1212/01.WNL.0000265401.62434.36. Epub 2007 Oct 17. Erratum In: Neurology. 2008 Sep 9;71(11):866. — View Citation

Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005 Dec;8(3):247-68. doi: 10.3233/jad-2005-8304. — View Citation

Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995 May;47(5):379-81. doi: 10.1111/j.2042-7158.1995.tb05814.x. — View Citation

Sano M, Raman R, Emond J, Thomas RG, Petersen R, Schneider LS, Aisen PS. Adding delayed recall to the Alzheimer Disease Assessment Scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord. 2011 Apr-Jun;25(2):122-7. doi: 10.1097/WAD.0b013e3181f883b7. — View Citation

Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008 Sep 1;192(1):106-13. doi: 10.1016/j.bbr.2008.02.016. Epub 2008 Feb 17. — View Citation

Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull. 1985 Aug;15(2):129-42. doi: 10.1016/0361-9230(85)90129-7. — View Citation

Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006 May 22;166(10):1092-7. doi: 10.1001/archinte.166.10.1092. — View Citation

Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav. 2004 Oct 30;83(1):47-54. doi: 10.1016/j.physbeh.2004.07.022. — View Citation

Thorne RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995 Sep 18;692(1-2):278-82. doi: 10.1016/0006-8993(95)00637-6. — View Citation

Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-96. doi: 10.1016/j.neuroscience.2004.05.029. — View Citation

Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007 Nov 16;282(46):33305-33312. doi: 10.1074/jbc.M610390200. Epub 2007 Sep 13. — View Citation

Weiss P, Holland Y. Neuronal dynamics and axonal flow, ii. The olfactory nerve as model test object. Proc Natl Acad Sci U S A. 1967 Feb;57(2):258-64. doi: 10.1073/pnas.57.2.258. No abstract available. — View Citation

Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992 Nov;12(6):900-18. doi: 10.1038/jcbfm.1992.127. — View Citation

Yu L, Buysse DJ, Germain A, Moul DE, Stover A, Dodds NE, Johnston KL, Pilkonis PA. Development of short forms from the PROMIS sleep disturbance and Sleep-Related Impairment item banks. Behav Sleep Med. 2011 Dec 28;10(1):6-24. doi: 10.1080/15402002.2012.636266. — View Citation

Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci. 2004 Dec 8;24(49):11120-6. doi: 10.1523/JNEUROSCI.2860-04.2004. — View Citation

Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta. 2009 May;1792(5):482-96. doi: 10.1016/j.bbadis.2008.10.014. Epub 2008 Nov 5. — View Citation

* Note: There are 52 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Number of Participants with Treatment-related Serious Adverse Events as Assessed by CTCAE v5.0 Adverse events will be assessed using Common Terminology Criteria for Adverse Events (CTCAE v5.0). The number of participants with grade 3 or greater adverse events that were deemed to be possibly, probably, or definitely related to study treatment will be reported. Week 8
Secondary Change in the Preclinical Alzheimer Cognitive Composite 5 (PACC5) Z-Score Cognition will be measured using the PACC5 scale, which includes the free/cued selective reminding test, delayed paragraph recall, digit-symbol substitution, mini mental state score, and the category fluency task. The PACC5 is a composite score comprised of measures of global cognition, memory, and executive function. The score reflects an averaged z-score, with higher scores indicating better cognitive performance. Baseline to Week 8
Secondary Change in the 14-item Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog 14) Score A psychometric instrument that evaluates memory, attention, reasoning, language, orientation, and praxis. A higher score indicates more impairment. Scores from the original portion of the test range from 0 (best) to 65 (worse), and are added to the mean of the words not immediately recalled (max of 10) and the number of items not recalled after a delay (ranging from 0-10) all total the maximum score of 85. A positive change indicates cognitive worsening. Baseline to Week 8
Secondary Change in amyloid ß-peptide (Aß) 40 (Aß40) in Cerebrospinal Fluid (CSF) Cerebrospinal fluid (CSF) samples will be used to measure the levels of amyloid ß-peptide (Aß) 40. CSF Aß40 is a key Alzheimer's disease (AD) biomarker that reflects pathological aggregation of amyloid in the brain. Baseline to Week 8
Secondary Change in amyloid ß-peptide (Aß) 42 (Aß42) in Cerebrospinal Fluid (CSF) Cerebrospinal fluid (CSF) samples will be used to measure the levels of amyloid ß-peptide (Aß) 42. CSF Aß42 is a key Alzheimer's disease (AD) biomarker that reflects pathological aggregation of amyloid in the brain. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Levels of Total Tau Cerebrospinal fluid (CSF) samples will be used to measure the levels of total tau protein in the brain to assess impact on brain tau as a relevant Alzheimer's Disease (AD) biomarker. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Levels of Phospho-Tau 181 Cerebrospinal fluid (CSF) samples will be used to measure the levels of phospho-tau 181 protein in the brain to assess impact on brain tau as a relevant Alzheimer's Disease (AD) biomarker. Baseline to Week 8
Secondary Change in Total Cerebral Blood Flow (CBF) Using MRI Pseudocontinuous Arterial Spin Labeling (ASL) Change in CBF in mL/100g/min, calculated as the difference between the pre- and post- ASL flow in response to the study intervention. Baseline to Week 8
See also
  Status Clinical Trial Phase
Completed NCT04044495 - Sleep, Rhythms and Risk of Alzheimer's Disease N/A
Completed NCT04079803 - PTI-125 for Mild-to-moderate Alzheimer's Disease Patients Phase 2
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT04520698 - Utilizing Palliative Leaders In Facilities to Transform Care for Alzheimer's Disease N/A
Active, not recruiting NCT04606420 - Can Lifestyle Changes Reverse Early-Stage Alzheimer's Disease N/A
Recruiting NCT05820919 - Enhancing Sleep Quality for Nursing Home Residents With Dementia - R33 Phase N/A
Terminated NCT03672474 - REGEnLIFE RGn530 - Feasibility Pilot N/A
Completed NCT03430648 - Is Tau Protein Linked to Mobility Function?
Recruiting NCT05557409 - A Study to Assess the Efficacy and Safety of AXS-05 in Subjects With Alzheimer's Disease Agitation Phase 3
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Recruiting NCT05288842 - Tanycytes in Alzheimer's Disease and Frontotemporal Dementia
Recruiting NCT04949750 - Efficacy of Paper-based Cognitive Training in Vietnamese Patients With Early Alzheimer's Disease N/A
Completed NCT06194552 - A Multiple Dose Study of the Safety and Pharmacokinetics of NTRX-07 Phase 1
Completed NCT03239561 - Evaluation of Tau Protein in the Brain of Participants With Alzheimer's Disease Compared to Healthy Participants Early Phase 1
Completed NCT03184467 - Clinical Trial to Evaluate the Efficacy and Safety of GV1001 in Alzheimer Patients Phase 2
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Terminated NCT03487380 - Taxonomic and Functional Composition of the Intestinal Microbiome: a Predictor of Rapid Cognitive Decline in Patients With Alzheimer's Disease N/A
Completed NCT05538455 - Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases N/A
Recruiting NCT05328115 - A Study on the Safety, Tolerability and Immunogenicity of ALZ-101 in Participants With Early Alzheimer's Disease Phase 1
Completed NCT05562583 - SAGE-LEAF: Reducing Burden in Alzheimer's Disease Caregivers Through Positive Emotion Regulation and Virtual Support N/A