View clinical trials related to All.
Filter by:Clofarabine is known to have a stronger anti-tumor effect than Fludarabine and has shown its efficacy in treating aggressive acute leukemias. In addition, evidence is that it is well-tolerated with manageable side effects especially in elderly patients. Thus, replacing Fludarabine with Clofarabine in a reduced intensity transplant regimen may provide a regimen with increased anti-tumor activity without adding significant risks of toxicity.The purpose of this study is to evaluate the efficacy and the safety of clofarabine in combination with IV busulfan and ATG as the backbone of a reduced intensity conditioning regimen for allogeneic stem cell transplantation for the treatment of patients with high-risk MDS/AML or ALL not eligible to conventional or standard myeloablative allo-SCT.
The purpose of this study is to provide allogeneic stem cell transplantation to patients who have not traditionally undergone this procedure because of it high incidence of treatment related side effects. We hope to decrease these side effects by decreasing the chemotherapy dose prior to transplant (non-myeloablative, smaller dose of chemotherapy given so bone marrow is not completely eliminated) and by using donated stem cells to treat cancer of the blood.
Patients are being asked to participate in this study because treatment for their disease requires a stem cell transplant (SCT). Stem cells are the source of normal blood cells found in the bone marrow and lead to recovery of blood counts after bone marrow transplantation. With stem cell transplants, regardless of whether the donor is a full match to the patient or not, there is a risk of developing graft-versus-host disease (GVHD). GVHD is a serious and sometimes fatal side effect of SCT. GVHD occurs when the new donor stem cells (graft) recognizes that the body tissues of the patient (host) are different from those of the donor. When this happens, cells in the graft may attack the host organs. How much this happens and how severe the GVHD is depends on many things, including how different the donors cells are, the strength of the drugs given in preparation for the transplant, the quality of transplanted cells and the age of the person receiving the transplant. Typically, acute GVHD occurs in the first 100 days following transplant, while chronic GVHD occurs after day 100. Acute GVHD most often involves the skin, where it can cause anywhere from a mild rash to complete removal of skin; liver, where it can anywhere from a rise in liver function tests to liver failure; and the gut, where it can cause anywhere from mild diarrhea to profuse, life-threatening diarrhea. Most patients who develop GVHD experience a mild to moderate form, but some patients develop the severe, life-threatening form. Previous studies have shown that patients who receive SCT's can have a lower number of special T cells in their blood, called regulatory T cells, than people who have not received stem cell transplants. When regulatory T cells are low, there appears to be an increased rate of severe, acute GVHD. A drug known as IL-2 (Proleukin) has been shown to increase the number of regulatory T cells in patients following stem cell transplant, and in this study investigators plan to give low dose IL-2 after transplant. This study is called a phase II study because its major purpose is to find out whether using a low-dose of IL-2 will be effective in preventing acute GVHD. Other important purposes are to find out if this treatment helps the patient's immune system recover regulatory T cells faster after the transplant. This study will assess the safety and toxicity of low-dose IL-2 given to patients after transplantation and determine whether this drug is helpful in preventing GVHD.
Allogeneic stem cell transplantation may provide long-term remissions for some patients with hematological malignancies. However, allogeneic transplantation is associated with a significant risk of potentially life threatening complications due to the effects of chemotherapy and radiation on the body and the risks of serious infection. In addition, patients may develop a condition called Graft versus host disease that arises from an inflammatory reaction of the donor cells against the recipient's normal tissues. The risk of graft versus host disease is somewhat increased in patients who are receiving a transplant from an unrelated donor. One approach to reduce the toxicity of allogeneic transplantation is a strategy call nonmyeloablative or "mini" transplants. In this approach, patients receive a lower dose of chemotherapy in an effort to limit treatment related side effects. Patients undergoing this kind of transplant remain at risk for graft versus host disease particularly if they receive a transplant from an unrelated donor. The purpose of this research study is to examine the ability of a drug called CAMPATH-1H to reduce the risk of graft versus host disease and make transplantation safer. CAMPATH-1H binds to and eliminates cells in the system such as T cells that can cause graft versus host disease (GvHD). As a result, earlier studies have shown that patients who receive CAMPATH-1H with an allogeneic transplant have a lower risk of GvHD. In the present study, we will examine the impact of treatment with CAMPATH-1H as part of an allogeneic transplant on the development of GvHD and infection. In addition, we will study the effects of CAMPATH-1H on the immune system by testing blood samples in the laboratory.
This study performs HLA matched stem cell transplantation from unrelated donors in adults who require stem cell transplantation but do not have a matched related donor available. The incidence of graft-versus-host disease in unrelated stem cell transplantation is recorded. This study also monitors the activity and toxicity of total body irradiation and cyclosphosphamide followed by stem cell transplantation from matched unrelated donors.
The purpose of this trial is to determine if selectively removing only a small subset of T cells, called CD8+ T cells, is safe and if it can reduce the risk of graft versus host disease (GVHD) without losing the anti-cancer effects.
The purpose of this study is to determine if the "Re-Engineered Discharge" will decrease rehospitalization rates and adverse events of patients leaving Boston Medical Center.
Background: - Allogeneic blood and marrow stem cell transplantation (BMT) plays an important role in the curative treatment of a number of pediatric malignancies. Unfortunately, the success of conventional allogeneic BMT is limited in part by the multiple toxicities associated with myeloablative preparative regimens. - Non-myeloablative pre-transplant regimens are associated with less toxic side effects than standard BMT. Recently, a novel immunosuppressive, non-myeloablative pre-transplant chemotherapy regimen has been shown to facilitate complete donor engraftment in an adult trial at the NCI. Objectives: The primary objective of this protocol is to evaluate the efficacy and safety of this treatment approach in pediatric patients with hematopoietic malignancies Eligibility: Inclusion Criteria Age: Patient must be greater than or equal to 5 years and less than 22 years of age. Diagnosis: - Hodgkin s and Non-Hodgkin s Lymphoma: Refractory disease or relapse after salvage regimen. - Acute Myelogenous Leukemia: History of bone marrow relapse in remission (CR) #2 or greater. - Acute Lymphocytic Leukemia: History of bone marrow relapse in CR #2 or greater (CR#1 with Philadelphia chromosome positive or prior induction failure). - Acute Hybrid Leukemia including mixed lineage, biphenotypic and undifferentiated: History of bone marrow relapse in CR #2 or greater (CR#1 with Philadelphia chromosome positive or prior induction failure). - Myelodysplastic Syndrome: RAEB or RAEB-t with less than 10% blasts in marrow and blood. - Chronic Myelogenous Leukemia: Chronic phase or accelerated phase with less than 10% blasts in marrow and blood. - Juvenile Myelomonocytic Leukemia: less than 10% blasts in marrow and blood. Prior Therapy: Chemotherapy to achieve above criteria allowed. Prior BMT allowed as long as at least day 100+ post-prior BMT, no evidence of GVHD, and no detectable residual donor chimerism. Donor: First degree related donors, who are HLA matched (single HLA-A or B locus mismatch allowed), weight greater than or equal to 15 kilograms, and who meet standard donation criteria will be considered. The same donor from a prior BMT is allowed. ECOG Performance Status: 0, 1, or 2. and life expectancy: greater than 3 months. Liver Function: Serum direct bilirubin less than 2.0 mg/dL and serum ALT and AST values less than or equal to 2.5x upper limit of normal. (Values above these levels may be accepted if due to malignancy.) Renal Function: Age adjusted normal serum creatinine or Cr clearance greater than or equal to 60 mL/min/1.73 m(2). Pulmonary Function: DLCO greater than or equal to 50%. Cardiac Function: LVEF greater than or equal to 45% by MUGA or LVSF greater than or equal to 28% by ECHO Exclusion Criteria - Active CNS malignancy: Tumor mass on CT or leptomeningeal disease. (Patients with a history of CNS involvement and no current evidence of CNS disease are allowed.) - HIV infection, active hepatitis B or C infection: HbSAg or HCV seropositive and elevated liver transaminases. - Fanconi Anemia. - Lactating or pregnant females. Design: Pilot Study - Initial evaluation: Patient and donor will be screened for eligibility. G-CSF primed bone marrow derived stem cells will be collected from the donor. - Induction/Consolidation chemotherapy: 1 to 3 cycles will be given every 22 days depending on disease response, CD4 count, and toxicities. - Lymphoma: fludarabine, etoposide, doxorubicin, vincristine, cyclophohamide, prednisone, and filgrastim (EPOCH-fludarabine). - Leukemia and MDS: Fludarabine, cytarabine, and filgrastim (FLAG). - Transplantation: Fludarabine and cyclophosphamide will be administered over 4 days followed by bone marrow transplant. Patients will remain hospitalized until bone marrow recovery. Patients will be monitored closely at the NIH for at least 100 days post-BMT. - Post-transplant CNS prophylaxis for ALL: Standard post-transplant CNS prophylaxis will be employed with intrathecal methotrexate to decrease the risk of CNS relapse for all patients with ALL. - Total number of recipient and donors to be accrued is 56.