View clinical trials related to Advanced Ovarian Carcinoma.
Filter by:This phase I trial identifies the best dose, possible benefits and/or side effects of gemcitabine in combination with elimusertib (BAY 1895344) in treating patients with pancreatic, ovarian, and other solid tumors that have spread to other places in the body (advanced). Gemcitabine is a chemotherapy drug that blocks the cell from making DNA and may kill tumor cells. elimusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine and elimusertib in combination may shrink or stabilize cancer.
This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.
This phase I trial identifies the best dose, possible benefits and/or side effects of BAY 1895344 in combination with chemotherapy in treating patients with solid tumors or urothelial cancer that has spread to other places in the body (advanced). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cisplatin and gemcitabine are chemotherapy drugs that stop the growth of tumor cells by killing the cells. Combining BAY 1895344 with chemotherapy treatment (cisplatin, or cisplatin and gemcitabine) may be effective for the treatment of advanced solid tumors, including urothelial cancer.
This pilot early phase I trial studies how adavosertib affects the tumor deoxyribonucleic acid (DNA) of patients undergoing surgery for high grade (fast growing or aggressive) ovarian, fallopian tube, or primary peritoneal cancer that has spread to other places in the body (advanced). Certain characteristics in the DNA of these patients may affect how well they respond to treatment. Learning how adavosertib affects DNA in tumor cells may help doctors plan effective treatment.
This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.
The purpose of this study is to evaluate the tolerability of intraperitoneal cisplatin with intravenous paclitaxel and Avastin as defined by the proportion of patients able to complete 6 cycles of treatment.