View clinical trials related to Adult Pilocytic Astrocytoma.
Filter by:This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
This phase I trial studies the side effects and best dose of alisertib when combined with fractionated stereotactic radiosurgery in treating patients with high-grade gliomas that have returned after previous treatment with radiation therapy (recurrent). Alisertib may stop the growth of tumor cells by blocking an enzyme needed for the cells to divide. Radiation therapy uses high energy x rays to kill tumor cells. Stereotactic radiosurgery uses special positioning equipment to send a single high dose of radiation directly to the tumor and cause less damage to normal tissue. Delivering stereotactic radiosurgery over multiple doses (fractionation) may cause more damage to tumor tissue than normal tissue while maintaining the advantage of its accuracy.
This clinical trial compares fluorine F 18 fluorodopa (18F FDOPA) positron emission tomography (PET) with standard magnetic resonance imaging (MRI) in measuring tumors in patients with glioma that is newly diagnosed or recurrent (has returned). 18F FDOPA is a radioactive drug that binds to tumor cells and is captured in images by PET. Computed tomography (CT) and MRI are used with PET to describe information regarding the function, location, and size of the tumor. PET/CT or PET/MRI may be more accurate than standard MRI in helping doctors find and measure brain tumors.
RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
This clinical trial is using EF5 to measure the oxygen level in tumor cells of patients undergoing surgery or surgery biopsy for newly diagnosed supratentorial malignant glioma. Diagnostic procedures using the drug EF5 to measure the oxygen level in tumor cells may help in planning cancer treatment
Erlotinib and temsirolimus and may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. This phase I/II trial is studying the side effects and best dose of temsirolimus when given together with erlotinib and to see how well they work in treating patients with recurrent malignant glioma.
This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor