View clinical trials related to Adult Oligodendroglioma.
Filter by:This phase I trial studies the side effects and best dose of alisertib when combined with fractionated stereotactic radiosurgery in treating patients with high-grade gliomas that have returned after previous treatment with radiation therapy (recurrent). Alisertib may stop the growth of tumor cells by blocking an enzyme needed for the cells to divide. Radiation therapy uses high energy x rays to kill tumor cells. Stereotactic radiosurgery uses special positioning equipment to send a single high dose of radiation directly to the tumor and cause less damage to normal tissue. Delivering stereotactic radiosurgery over multiple doses (fractionation) may cause more damage to tumor tissue than normal tissue while maintaining the advantage of its accuracy.
The primary purpose of this phase II clinical trial is to determine the safety and effect on survival of patients autologous dendritic cells pulsed with autologous tumor lysate as a treatment for low-grade glioma patients. Other goals of this study are to determine if the vaccine can cause an immune response against patients' cancer cells and slow the growth of their brain tumors
This trial studies the natural history of brain function, quality of life, and seizure control in patients with brain tumor who have undergone surgery. Learning about brain function, quality of life, and seizure control in patients with brain tumor who have undergone surgery may help doctors learn more about the disease and find better methods of treatment and on-going care.
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
This phase I/II trial studies the side effects and best dose of temsirolimus when given together with perifosine and to see how well it works in treating patients with recurrent or progressive malignant glioma. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with perifosine may be an effective treatment for malignant glioma.
RATIONALE: Specialized radiation therapy, such as proton beam radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase I/II trial is studying the best way to give proton beam radiation therapy and to see how well it works in treating patients with low grade gliomas.
This phase II trial studies how well everolimus works in treating patients with recurrent low-grade glioma. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor.
This phase II trial is studying how well sunitinib works in treating patients with recurrent malignant gliomas. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Bevacizumab may reduce CNS side effects caused by radiation therapy. This randomized phase II trial is studying how well bevacizumab works in reducing CNS side effects in patients who have undergone radiation therapy to the brain for primary brain tumor, meningioma, or head and neck cancer.
This phase I/II trial is studying the side effects and best dose of imatinib mesylate and to see how well it works in treating patients with a recurrent brain tumor that has not responded to previous surgery and radiation therapy. Imatinib mesylate may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth.