View clinical trials related to Adult Gliosarcoma.
Filter by:This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given with isotretinoin in treating patients with recurrent malignant glioma. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Isotretinoin may help cells that are involved in the body's immune response to work better. Giving erlotinib hydrochloride together with isotretinoin may kill more tumor cells
This randomized phase II trial studies temozolomide, radiation therapy, and cediranib maleate to see how well they work compared with temozolomide, radiation therapy, and a placebo in treating patients with newly diagnosed glioblastoma (a type of brain tumor). Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill tumor cells. Cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It is not yet known whether temozolomide and radiation therapy are more effective when given with or without cediranib maleate in treating glioblastoma.
This phase I/II trial studies the side effects and best dose of temsirolimus when given together with perifosine and to see how well it works in treating patients with recurrent or progressive malignant glioma. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with perifosine may be an effective treatment for malignant glioma.
This randomized phase II trial is studying how well GDC-0449 works in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. GDC-0449 may be effective in treating patients with glioblastoma multiforme.
This phase I trial is studying the side effects and best dose of cediranib maleate when given together with cilengitide in treating patients with progressive or recurrent glioblastoma. Cediranib maleate and cilengitide may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cediranib maleate together with cilengitide may kill more tumor cells.
This phase II trial is studying how well positron emission tomography (PET) scan using 18F-fluoromisonidazole works when given together with magnetic resonance imaging (MRI) ) in assessing tumor hypoxia in patients with newly diagnosed glioblastoma multiforme (GBM). Diagnostic procedures, such as MRI and PET scan using 18F-fluoromisonidazole (FMISO), may help predict the response of the tumor to the treatment and allow doctors to plan better treatment.
This phase II trial studies how well bendamustine hydrochloride works in treating patients with anaplastic glioma or glioblastoma that has come back (recurrent) or growing, spreading or getting worse (progressive). Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This phase I/II trial studies the side effects and best dose of vorinostat when given together with temozolomide and radiation therapy and to see how well they work in treating patients with newly diagnosed glioblastoma multiforme. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with temozolomide and radiation therapy may kill more tumor cells.
This phase I/II trial is studying the side effects and best dose of cediranib to see how well it works when given together with temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma. Cediranib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving cediranib together with temozolomide and radiation therapy may kill more tumor cells.