View clinical trials related to Adult Erythroleukemia (M6a).
Filter by:This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.
This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.
This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs
This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.
This pilot clinical trial studies sirolimus, idarubicin, and cytarabine in treating patients with newly diagnosed acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving sirolimus together with idarubicin and cytarabine may kill more cancer cells.
This phase I trial studies the side effects and best dose of tretinoin when given together with lithium carbonate in treating patients with relapsed or refractory acute myeloid leukemia. Lithium carbonate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tretinoin may help [type of cancer] cells become more like normal cells, and to grow and spread more slowly. Giving lithium carbonate together with tretinoin may kill more cancer cells
The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.
This phase I trial studies the side effects and the best dose of trebananib when given together with or without low-dose cytarabine in treating patients with acute myeloid leukemia (AML). Trebananib may stop the growth of AML by blocking blood flow to the cancer. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving trebananib together with cytarabine may be an effective treatment for patients with AML.
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This randomized phase II trial is studying how alvocidib, cytarabine, and mitoxantrone hydrochloride work compared to cytarabine and daunorubicin hydrochloride in treating patients with newly diagnosed acute myeloid leukemia. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, mitoxantrone hydrochloride, and daunorubicin hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving alvocidib, cytarabine, and mitoxantrone hydrochloride is more effective than giving cytarabine and daunorubicin hydrochloride in treating patients with acute myeloid leukemia.