Clinical Trials Logo

Adult Erythroleukemia (M6a) clinical trials

View clinical trials related to Adult Erythroleukemia (M6a).

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT02144675 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

Start date: January 2009
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.

NCT ID: NCT01872819 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay

Start date: August 2, 2013
Phase: N/A
Study type: Interventional

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

NCT ID: NCT01839240 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

Start date: June 6, 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs

NCT ID: NCT01831232 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

Start date: May 2013
Phase: N/A
Study type: Interventional

This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.

NCT ID: NCT01822015 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: March 15, 2013
Phase: Early Phase 1
Study type: Interventional

This pilot clinical trial studies sirolimus, idarubicin, and cytarabine in treating patients with newly diagnosed acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving sirolimus together with idarubicin and cytarabine may kill more cancer cells.

NCT ID: NCT01820624 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: April 30, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of tretinoin when given together with lithium carbonate in treating patients with relapsed or refractory acute myeloid leukemia. Lithium carbonate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tretinoin may help [type of cancer] cells become more like normal cells, and to grow and spread more slowly. Giving lithium carbonate together with tretinoin may kill more cancer cells

NCT ID: NCT01607645 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

Start date: July 2012
Phase: Phase 2
Study type: Interventional

The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.

NCT ID: NCT01555268 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

Start date: October 31, 2011
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of trebananib when given together with or without low-dose cytarabine in treating patients with acute myeloid leukemia (AML). Trebananib may stop the growth of AML by blocking blood flow to the cancer. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving trebananib together with cytarabine may be an effective treatment for patients with AML.

NCT ID: NCT01427881 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies

Start date: September 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.

NCT ID: NCT01349972 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: April 2011
Phase: Phase 2
Study type: Interventional

This randomized phase II trial is studying how alvocidib, cytarabine, and mitoxantrone hydrochloride work compared to cytarabine and daunorubicin hydrochloride in treating patients with newly diagnosed acute myeloid leukemia. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, mitoxantrone hydrochloride, and daunorubicin hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving alvocidib, cytarabine, and mitoxantrone hydrochloride is more effective than giving cytarabine and daunorubicin hydrochloride in treating patients with acute myeloid leukemia.