View clinical trials related to Adult Anaplastic Astrocytoma.
Filter by:This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
RATIONALE: Bafetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This clinical trial studies bafetinib in treating patients with recurrent high-grade glioma or brain metastases.
This phase I/II trial is studying the side effects and the best dose of RO4929097 to see how well it works when given together with bevacizumab compared to bevacizumab alone in treating patients with progressive or recurrent malignant glioma. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving RO4929097 together with bevacizumab may kill more tumor cells.
RATIONALE: Genetically-modified neural stem cells (NSCs) that convert 5-fluorocytosine (5-FC) into the chemotherapy agent 5-FU (fluorouracil) at sites of tumor in the brain may be an effective treatment for glioma. PURPOSE: This clinical trial studies genetically-modified NSCs and 5-FC in patients undergoing surgery for recurrent high-grade gliomas.
RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma
This phase I trial is studying the side effects and best dose of aminolevulinic acid during surgery in treating patients with malignant brain tumors. Aminolevulinic acid becomes active when it is exposed to a certain kind of light and may help doctors find and remove tumor cells during surgery
This phase I clinical trial is studying the side effects and best dose of giving gamma-secretase inhibitor RO4929097 and cediranib maleate together in treating patients with advanced solid tumors. Gamma-secretase inhibitor RO4929097 and cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate also may stop the growth of tumor cells by blocking blood flow to the tumor.
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given with isotretinoin in treating patients with recurrent malignant glioma. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Isotretinoin may help cells that are involved in the body's immune response to work better. Giving erlotinib hydrochloride together with isotretinoin may kill more tumor cells
This phase I/II trial studies the side effects and best dose of temsirolimus when given together with perifosine and to see how well it works in treating patients with recurrent or progressive malignant glioma. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with perifosine may be an effective treatment for malignant glioma.