View clinical trials related to Acute Lymphocytic Leukemia.
Filter by:This is an open, two arms, mask phase I clinical study to evaluate efficacy and safety of two different chimeric antigen receptor T cell immunotherapies (Senl_1904A and Senl_1904B) targeting cluster of differentiation antigen 19 (CD19) in the treatment of Acute lymphocytic Leukemia. A total of 20 patients are planned to be enrolled following up half a year.
In this trial, the investigators will begin to explore the possibility that, as in mice, janus kinase inhibitor 1 (JAK1) inhibition with haploidentical-hematopoietic cell transplantation (HCT) may mitigate graft-versus-host-disease (GVHD) and cytokine release syndrome (CRS) while retaining Graft-versus-Leukemia (GVL) and improving engraftment. The purpose of this pilot study is to determine the safety of itacitinib with haplo-hematopoietic cell transplantation (HCT) measured by the effect on engraftment and grade III-IV GVHD.
This is a phase I/II clinical trial on the use of total marrow irradiation (TMI) given concurrently with fludarabine, a chemotherapy drug commonly used to treat leukemia, as a myeloablative therapy for patients undergoing Allo-HSCT. TMI is a targeted technique to deliver radiation to the bone marrow while minimizing dose to other normal organs in the body. In phase I of the clinical study, the dose of radiation to the bone marrow will be incrementally increased to determine the highest tolerated TMI dose. In phase II, the effectiveness of the TMI-fludarabine conditioning regimen utilizing that dose of radiation will be studied. Acute and long-term toxicity data as well as quality of life data will also be studied. *Stopping criteria was met during the first dose level cohort in Phase l. The trial will not continue into Phase II as originally planned.
This is an single arm, open label, interventional phase II trial evaluating the efficacy of umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC) expanded in culture with stimulatory cytokines (SCF, Flt-3L, IL-6 and thromopoietin) on lympho-hematopoietic recovery. Patients will receive a uniform myeloablative conditioning and post-transplant immunoprophylaxis.
This is a prospective pilot study, the primary aim of which is to determine whether the presence of 18F FLT imaging signal uptake abnormalities correlate with clinically validated evidence of hematopoietic malignant disease (e.g. MRD, molecular, flow or histology) after immunotherapy and other treatments.
This study evaluates the pharmacokinetics and safety of CPX-351 in patients with moderate or severe renal impairment.
Background: B-cell leukemias and lymphomas are cancers that are often difficult to treat. The primary objective of this study is to determine the ability to take a patient's own cells (T lymphocytes) and grow them in the laboratory with the CD19/CD22-CAR receptor gene through a process called 'lentiviral transduction (also considered gene therapy) and growing them to large numbers to use as a treatment for hematologic cancers in children and young adults.. Researchers want to see if giving modified CD19/CD22-CAR T cells to people with these cancers can attack cancer cells. In addition, the safety of giving these gene modified cells to humans will be tested at different cell doses. Additional objectives are to determine if this therapy can cause regression of B cell cancers and to measure if the gene modified cells survive in patients blood. Objective: To study the safety and effects of giving CD19/CD22-CAR T cells to children and young adults with B-cell cancer. Eligibility: People ages 3-39 with certain cancers that have not been cured by standard therapy. Their cancer tissue must express the CD19 protein. Design: A sample of participants blood or bone marrow will be sent to NIH and tested for leukemia. Participants will be screened with: Medical history Physical exam Urine and blood tests (including for HIV) Heart and eye tests Neurologic assessment and symptom checklist. Scans, bone marrow biopsy, and/or spinal tap Some participants will have lung tests. Participants will repeat these tests throughout the study and follow-up. Participants will have leukapheresis. Blood will be drawn from a plastic tube (IV) or needle in one arm then go through a machine that removes lymphocytes. The remaining blood will be returned to the participant s other arm. Participants will stay in the hospital about 2 weeks. There they will get: Two chemotherapy drugs by IV Their changed cells by IV Standard drugs for side effects Participants will have frequent follow-up visits for 1 year, then 5 visits for the next 4 years. Then they will answer questions and have blood tests every year for 15 years. ...
The purpose of this study is to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary antitumor activity of AZD4573 in subjects with relapsed or refractory haematological malignancies.
Autologous T cells engineered to express an anti-CD19 chimeric antigen receptor (CAR) will be infused back to patients with refractory /relapsed B cell malignancies, including lymphoma and leukemia. The patients will be monitored after infusion of anti-CD19 CAR-transduced T cells for safety,adverse events, persistence of anti-CD19 CAR-transduced T cells and treatment efficacy.
This study has two phases, Phase I and Phase II. The main goal of the Phase I portion of this research study is to see what doses post-transplant inotuzumab ozogamicin can safely be given to subjects without having too many side effects. The Phase II portion of this study is to see what side effects are seen with medication after transplant. Inotuzumab ozogamicin is a combination of an antibody and chemotherapy which has been shown to have significant activity against relapsed/refractory acute lymphocytic leukemia (ALL). Inotuzumab ozogamicin is considered experimental in this study.