View clinical trials related to Acute Lung Injury (ALI).
Filter by:Sepsis is the most frequent risk factor for ALI/ARDS. Meanwhile, Pulmonary is the most vulnerable organ to fail in response to sepsis, vascular endothelial dysfunction is a central event in the pathophysiology of sepsis. An improved understanding of endothelial response and associated biomarkers may lead to strategies to more accurately predict outcome and develop novel endothelium-directed therapies in sepsis. The human and mouse R-spondins encode a family of proteins that includes four paralogs (R-spo1-4). R-spondins are secreted proteins found primarily in the extracellular region and are known to promote β-catenin signaling. Among them, the embryonic lethal vascular remodeling phenotype of R-spondin3 (Rspo3) mutant mice suggests a role of EC derived Rspo3 in angiogenesis. Rspo3 protects tissues against mesenteric I/R by tightening endothelial cell junction and improving vascular intergrity. However, the role of Rspo3 in sepsis-induced pulmonary endothelial dysfunction remains unclear. Thus, it is worthwhile to explore the relationship between Rspo3 and sepsis-induced lung injury, which will be helpful for prevention and treatment of sepsis-induced lung injury and endothelial dysfunction.
APRV mode of ventilation will result in an improved partial pressure of arterial oxygenation/ fraction of inspired oxygen (P/F ratio) on day 3 of mechanical ventilation. Sub hypotheses: APRV will be associated with a reduced amount of sedation used during the ICU stay in patients with respiratory failure. APRV will be associated with a reduction in the amount of vasoactive medication used for blood pressure support in patients with respiratory failure.
The objective of this study is to compare the effects of two intraoperative fluid regimens - restrictive versus liberal (standard)- on postoperative outcomes (e.g. cardiopulmonary complications, morbidity, mortality and duration of hospitalization) in lung resections via Video-assisted thoracic surgery (VATS).