Clinical Trials Logo

Clinical Trial Summary

Dry immersion (DI) is a ground-based model of prolonged conditions of simulated microgravity. Dry immersion involves immersing the subject in water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. Within a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. The objective of the study is to evaluate the physiological changes induced by 5 days of dry immersion in the female organism. The main physiological systems will be explored before, during and after the 5 days of immersion through a battery of specific tests and measurements. The results will be analyzed by scientists specializing in each field in order to better understand the dry immersion model, to compare its effects with those of the bedrest model and those of spaceflight. The clinical (adverse effects, comfort of subjects) and operational aspects are also part of the secondary objectives of the study.


Clinical Trial Description

The space agencies are actively engaged in studying the physiological adaptation to space environment through studies on board the International Space Station (ISS) but also on the ground. Ground-based experiments simulating the effects of weightlessness are used to better understand the mechanisms of physiological adaptation, design and validate the countermeasures. Dry immersion (DI) is a ground-based model of prolonged conditions of simulated microgravity, which has been mainly used in Russia. The past years however, the model has been implemented as well in Europe and expertise in conducting DI studies has been gained in particular in France where a few DI studies have been conducted in the MEDES Space Clinic in Toulouse for CNES (French Space Agency). Dry immersion involves immersing the subject in water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. Within a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Furthermore, physiological changes have been reported in the neuromuscular, skeletal and sensorimotor systems, in fluid electrolyte regulation, in the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. Dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon called 'supportlessness'). As such, dry immersion is proposed to mimic actual spaceflight in terms of the monotonous environment, posture-motion limitations, hemodynamic changes and hypokinetic effects, support unloading, and decreased proprioceptive input. Immersion studies have so far only been conducted in men and a minority of studies using the bedrest model have included women. Likewise, few studies conducted to date have investigated gender differences in the astronaut population. The small number of female astronauts may be part of the reason why scientific data are lacking to draw valid conclusions about possible gender differences. However, if women currently constitute only about 10% of astronauts, women are and will be more and more represented in crews. Women now constitute 30% of American crews and NASA (US space agency) has announced gender parity for crews on future lunar missions. It is therefore essential to study the physiological changes induced by weightlessness in women, to compare them with those observed in men and to develop efficient countermeasures for preventing them. The main physiological systems will be explored before, during and after the 5 days of immersion through a battery of specific standardized tests and measurements. The objective of the study is to evaluate the physiological changes induced by 5 days of dry immersion in the female organism. The study conditions such as patient recruitment, nutrition, data collection, data management, reporting for adverse events are standardized. The results will be analyzed by scientists specializing in each field in order to better understand the dry immersion model, to compare its effects with those of the bedrest model and those of spaceflight. The clinical (adverse effects, comfort of subjects) and operational aspects are also part of the secondary objectives of the study. Twenty healthy female subjects will participate in the study. There is no published data on dry immersion with female participation to help calculation the sample size. Moreover, female spaceflight and bedrest data are scarce, and do not provide any insight into inter-individual variability. This prolonged DI protocol in women is conceived as a pilot, descriptive, explorative study, as well as an operational and methodological study. Power-based calculation of the number of subjects is not directly applicable for such explorative studies. However, based on effect sizes obtained with previous DI studies in men, a total of 20 subjects was deemed necessary for this study. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05043974
Study type Interventional
Source Centre National d'Etudes Spatiales
Contact
Status Completed
Phase N/A
Start date August 24, 2021
Completion date December 10, 2021

See also
  Status Clinical Trial Phase
Completed NCT03594799 - A New Nutritional Countermeasure to Prevent the Deconditioning Induced by 60 Days of Antiorthostatic Bed Rest N/A
Enrolling by invitation NCT03986788 - Cerebral Blood Flow Distribution During Parabolic Flight-induced Microgravity N/A
Completed NCT03915457 - Thigh Cuffs to Prevent the Deconditioning Induced by 5 Days of Dry Immersion N/A
Completed NCT03195348 - The Effects of Whole Body Unloading on Physiological Function N/A
Recruiting NCT05496309 - Causes and Mechanisms of Space Hemolysis at High Altitudes
Completed NCT02300207 - Electroacupuncture is Effective in Cardiac Deconditioning Induced by Head-down Bed Rest N/A
Completed NCT00891449 - Space Flight Simulation to Study Effects of Micro-gravity Through Bed Rest N/A
Completed NCT05493176 - A 5-day Dry Immersion Study on 20 Healthy Male Volunteers N/A