Clinical Trials Logo

Ventilator-Induced Lung Injury clinical trials

View clinical trials related to Ventilator-Induced Lung Injury.

Filter by:
  • Not yet recruiting  
  • Page 1

NCT ID: NCT06334523 Not yet recruiting - Clinical trials for Ventilator-Induced Lung Injury

Ventilation of the Extremely Premature Infants Optimized by Dead Space Washout

Volem
Start date: May 1, 2024
Phase: Phase 2
Study type: Interventional

The Continuous Tracheal Gas Insufflation (CTGI) is a ventilation option of conventional ventilation to reduce or even cancel dead space due to respiratory prostheses. This objective is particularly interesting in the smallest preterm infants in which the volume of anatomical dead space due to prostheses is little different from the tidal volume. The principle of this option is to continuously blow an additional flow of 0.2 L/min at tip of endotracheal tube to purge expired CO2 trapped in the prostheses to have a CO2-free volume of gas available for subsequent insufflation.

NCT ID: NCT06296173 Not yet recruiting - Anesthesia Clinical Trials

Open Lung Protective Extubation Following General Anesthesia

OLEXT-3
Start date: September 1, 2024
Phase: N/A
Study type: Interventional

Perioperative respiratory complications are a major source of morbidity and mortality. Postoperative atelectasis plays a central role in their development. Protective "open lung" mechanical ventilation aims to minimize the occurrence of atelectasis during the perioperative period. Randomized controlled studies have been performed comparing various "open lung" ventilation protocols, but these studies report varying and conflicting effects. The interpretation of these studies is complicated by the absence of imagery supporting the pulmonary impact associated with the use of different ventilation strategies. Imaging studies suggest that the gain in pulmonary gas content in "open lung" ventilation regimens disappears within minutes after the extubation. Thus, the potential benefits of open-lung ventilation appear to be lost if, at the time of extubation, no measures are used to keep the lungs well aerated. Recent expert recommendations on good mechanical ventilation practices in the operating room conclude that there is actually no quality study on extubation. Extubation is a very common practice for anesthesiologists as part of their daily clinical practice. It is therefore imperative to generate evidence on good clinical practice during anesthetic emergence in order to potentially identify an effective extubation strategy to reduce postoperative pulmonary complications.

NCT ID: NCT06157073 Not yet recruiting - ARDS Clinical Trials

Efficacy and Safety of Automated Closed-loop Ventilator vs Conventional Open-loop Ventilator in the Emergency Department

AVAC
Start date: January 1, 2024
Phase: N/A
Study type: Interventional

Patients presenting to the emergency department (ED) may require breathing support with machines depending on the condition. Throughout the breathing support, the settings on the breathing machines will be tailored to the patient's requirements. These settings are manually adjusted by trained physicians. Currently, there are machines which can automatically change the settings based on real-time specific information obtained from the patient. This study aims to compare the use of machines which require manual adjustments (open-loop conventional ventilators) and machines which can automatically change the settings (closed-loop automated ventilators). Patients will be carefully selected to ensure no harm is caused whilst delivering the best care. This study will look into the duration when patients are receiving optimum settings and levels of oxygen and carbon dioxide in the blood. The outcomes of this study would allow us to identify methods to improve patient care.

NCT ID: NCT05875883 Not yet recruiting - Ultrasound Clinical Trials

Phrenic Identification in the ICU

Start date: August 7, 2023
Phase:
Study type: Observational

This will be a prospective observational study where the investigator will scan patients' necks with an ultrasound and look for anatomical landmarks that may help identify the phrenic nerve.

NCT ID: NCT05859906 Not yet recruiting - Clinical trials for Ventilator-induced Lung Injury

The Effect of Two Different Intra-abdominal Pressure Applications on "Mechanical Power" in Laparoscopic Cholecystectomy

Start date: May 15, 2023
Phase:
Study type: Observational [Patient Registry]

In laparoscopic surgeries; a trocar is inserted through a small incision and an intervention is made into the peritoneal cavity. Approximately 3-4 liters of carbon dioxide (CO2) insufflation (inflating the abdominal cavity with carbon dioxide gas) is applied and the intra-abdominal pressure is adjusted to 10-20 mmHg. Laparoscopic cholecystectomy operation is routinely performed with 12 mmHg and 14 mmHg pressures in our operating room, and the preferred pressure value is; It is determined by the surgical team to be the most appropriate value for the patient and the operation. Both pressure values applied to the patients intraoperatively are within safe ranges. The mechanical power of ventilation (MP) is the amount of energy transferred per unit time from the mechanical ventilator to the respiratory system. Although this energy is mainly used to overcome airway resistance, some of it directly affects the lung tissue, potentially causing ventilator induced lung injury (VILI). To prevent ventilator-associated lung injury, it requires the mechanical ventilator to be adjusted so that the least amount of energy is transferred to the respiratory system per unit time for each patient. In the results obtained in the published studies; increased mechanical strength has been associated with increased in-hospital mortality, higher hospital stay and higher ICU follow-up requirement. The aim of this study is to investigate the effect of two different intra-operative intra-abdominal pressure levels applied to patients who underwent laparoscopic cholecystectomy under general anesthesia on 'Mechanical Power (MP)'.

NCT ID: NCT05019079 Not yet recruiting - Electroacupuncture Clinical Trials

Protective Effect of Electroacupuncture on Lung in Patients Undergoing General Anesthesia

Start date: September 1, 2021
Phase: N/A
Study type: Interventional

Objective to investigate the protective effect of preoperative electroacupuncture on lung function in patients with mechanical ventilation for more than 2 hours under general anesthesia

NCT ID: NCT03245684 Not yet recruiting - ARDS Clinical Trials

Assisted or Controlled Ventilation in Ards (Ascovent)

ASCOVENT
Start date: September 1, 2017
Phase: N/A
Study type: Interventional

The present pilot randomized controlled clinical trial will test the hypothesis that in patients with ARDS, fixing ventilator settings to the conventional protective ventilatory strategy (VT 6 ml/kg ideal body weight and Pplat ≤ 30 cmH2O, PEEP according the PEEP/FiO2 table), control modes of mechanical ventilation will be associated to a concentration of pulmonary and systemic inflammatory mediators lower than the concentration of inflammatory mediators observed during assisted modes of mechanical ventilation.