Type2 Diabetes Clinical Trial
Official title:
Molke Oder Casein - Leberfettreduktion Und Stoffwechselverbesserung Durch Schnelle vs. Langsame Proteine (Whey or Casein - Liver Fat Reduction and Metabolic Improvement by Fast vs. Slow Proteins)
High-protein diets have been recently demonstrated to effectively reduce insulin resistance, derangements of the lipid profile and liver fat content in subjects with moderately and severely impaired glucose metabolism and non-alcoholic fatty liver disease (LeguAN, LEMBAS, DiNA-P, DiNA-D). The effects can be attributed to prolonged insulin secretion and improved second meal effect, higher energy expenditure by urea synthesis, suppression of glucagon or other mechanisms. Up to now, it is unclear, if proteins with slower or faster digestibility lead to differential results in these study designs. The proposed study will elucidate this question. The Investigators hypothesize, that slowly-digestible proteins induce a prolonged insulin plateau supporting the second-meal effect. The investigators also assume, that these dietary proteins lead to a markedly stronger short-term secretion of glucagon followed by desensitisation of this hormone release. Fast-digestible proteins, on the other hand, will presumably induce a smaller second-meal effect and do not inhibit a second rise of glucagon in a consecutive meal. The investigators intend to study the effects of a 3-weeks high-protein diet in 80 subjects with NAFLD and T2DM on liver fat content (MR spectroscopy) and glucose metabolism. The investigators expect different results for slow protein (casein) and fast protein (whey), thus comparing both protein species. The two major clinical visits before and after the intervention period will include MRI spectroscopy, fasting blood sampling for later analysis, full anthropometric assessment, a mixed meal tolerance test and a set of behavioral tests, investigating decision making processes. In order to characterize the postprandial profiles (e.g. insulin, glucagon, amino acids) of the varying protein sources, preliminary meal tests are performed in overweight subjects with and without T2DM.
High-protein diets have been recently demonstrated to effectively reduce insulin resistance, derangements of the lipid profile and liver fat content in subjects with moderately and severely impaired glucose metabolism and non-alcoholic fatty liver disease (LeguAN, LEMBAS, DiNA-P, DiNA-D). The effects can be attributed to prolonged insulin secretion and improved second meal effect, higher energy expenditure by urea synthesis, suppression of glucagon or other mechanisms. Up to now, it is unclear, if proteins with slower or faster digestibility lead to differential results in these study designs. The proposed study will elucidate this question. The investigators hypothesize, that slowly-digestible proteins induce a prolonged insulin plateau supporting the second-meal effect. They also assume, that these dietary proteins lead to a markedly stronger short-term secretion of glucagon followed by desensitisation of this hormone release. Fast-digestible proteins, on the other hand, will presumably induce a smaller second-meal effect and do not inhibit a second rise of glucagon in a consecutive meal. The investigators intend to study the effects of a 3-weeks high-protein diet in 80 subjects with NAFLD and T2DM on liver fat content (MR spectroscopy) and glucose metabolism. The investigators expect different results for slow protein (casein) and fast protein (whey), thus comparing both protein species. The two major clinical visits before and after the intervention period will include MRI spectroscopy, fasting blood sampling for later analysis, full anthropometric assessment, a mixed meal tolerance test and a set of behavioral tests to investigate decision making processes. In order to characterize the postprandial hormonal and amino acid profiles (e.g. insulin, glucagon, amino acids) of the varying protein sources, preliminary meal tests are performed. The first tests assess the protein dose-finding in 20 participants, 10 with T2DM and 10 without. On each day of the dose-finding assessment pre-trial one of the following dosages is used in a single oral protein tolerance test (5 g, 10 g and 30 g of whey or casein each).The second tests assess whether 30 g mixes of whey and casein in variable proportions induce different hormonal profiles of glucagon and insulin in comparison with 30 g pea protein, served as drinks together with a standardized breakfast. Therefore, 20 subjects, 10 with Metabolic Syndrome and T2DM and 10 with Metabolic Syndrome without T2DM undergo seven separate investigation days. The third preliminary tests assess the role of the product matrix/consistency in 6 participants with overweight/obesity. Participants consume commercially available milk products each 30 g protein content (approx. 80% Casein) but with different product consistency on three separate investigation days. Subjects without prior diabetes diagnosis additionally undergo an initial oral glucose tolerance test (OGTT) to ensure healthy glucose levels. All clinical assessments will be conducted in the Dept. Endocrinology, Diabetes and Nutrition, Charité, Campus Benjamin Franklin (Lead: Charité, A.F.H. Pfeiffer). Psychobehavioral tests (DIfE, Prof. Park), assessment of body fat distribution including liver fat (University Hospital Tuebingen, Dr. Machann) and measurements of amino acid levels throughout the meal tests (Technische Universität Berlin, Prof. Rohn) are secondary work packages. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03239366 -
A Study to Evaluate the Effect of BioK+ 50B® on Glycemic Control in a Type 2 Diabetes Population
|
Phase 2 | |
Completed |
NCT04597229 -
Efficacy of Multigrain Supplementation in Type II Diabetes Mellitus
|
N/A | |
Completed |
NCT03623139 -
Effects of Basic Carbohydrate Counting Versus Standard Outpatient Nutritional Education in Type 2 Diabetes
|
N/A | |
Active, not recruiting |
NCT04599920 -
Effects of Replacing Red Meat With Legumes on Biomarkers of Chronic Diseases in Healthy Men (Leg4Life)
|
N/A | |
Active, not recruiting |
NCT03422471 -
Hypoglycemia and Autonomic Nervous System Function- B2
|
N/A | |
Completed |
NCT04382521 -
A Text Message Intervention to Promote Health Behaviors in Cardiac Risk Conditions
|
N/A | |
Recruiting |
NCT03458715 -
The Efficacy of Sodium-glucose Co-transporter 2 Inhibitor or Dipeptidyl Peptidase-4 Inhibitor in Type 2 Diabetes Patients With Premix Insulin
|
Phase 4 | |
Terminated |
NCT03278236 -
Does Time Restricted Feeding Improve Glycaemic Control in Overweight Men?
|
N/A | |
Completed |
NCT02974504 -
Phase IV Clinical Trial to Investigate the Effect on Blood Glucose of Evogliptin in Patients With Type 2 Diabetes(EVERGREEN)
|
Phase 4 | |
Completed |
NCT05053828 -
Type 2 Diabetes With Antiplatelet Drugs
|
||
Not yet recruiting |
NCT03659383 -
The Exploration of Optimal Treatment Scheme in Patients With Type 2 Diabetes Inadequately Controlled With Glargine
|
Phase 4 | |
Completed |
NCT03542240 -
Effects of Curcumin Supplementation on Gut Barrier Function in Patients With Metabolic Syndrome
|
N/A | |
Completed |
NCT03657537 -
Effects of Ketone Bodies on Cognition in Type 2 Diabetes
|
Phase 1 | |
Completed |
NCT03979768 -
Risk Assessment of Type 2 Diabetes in Pharmacies
|
N/A | |
Completed |
NCT03614039 -
Effect of Probiotic and Smectite Gel on NAFLD
|
N/A | |
Active, not recruiting |
NCT04994288 -
A Study of Efficacy and Safety of Supaglutide in Type 2 Diabetes Patients
|
Phase 2/Phase 3 | |
Completed |
NCT03290768 -
Continuous Glucose Monitors to Regulate Glucose Levels in Type 2 Diabetics - (Protocol 3)
|
N/A | |
Enrolling by invitation |
NCT04088851 -
"The Role of the Liver for Interorgan Metabolic Crosstalk in Type 2 Diabetes"
|
N/A | |
Completed |
NCT03643783 -
Impact of Plasma Soluble Prorenin Receptor in Obese and Type 2 Diabetic Patients
|
||
Active, not recruiting |
NCT04451837 -
Semaglutide and Dapagliflozin in Diabetic Patients With Different Pathophysiology
|
Phase 2 |