Type 1 Diabetes Clinical Trial
Official title:
Pathogenesis of Kidney Disease in Type 1 Diabetes: a Modern Kidney Biopsy Cohort (The PANDA Study)
Diabetic kidney disease (DKD) occurs in up to 40% of people with type 1 diabetes (T1D), often leading to kidney failure and markedly magnifying risks of cardiovascular disease and premature death. Landmark T1D kidney biopsy studies identified the classic pathological lesions of DKD, which have been attributed largely to hyperglycemia. Recent advances in continuous glucose monitoring (CGM) and automated insulin delivery have facilitated improved glycemic control, but the residual risk of DKD continues to be high. In addition, obesity and insulin resistance (IR) have accompanied intensive glycemic therapy and may promote mitochondrial dysfunction and inflammation. Deciphering the molecular underpinnings of DKD in modern-day T1D and identifying modifiable risk factors could lead to more effective and targeted therapies to prevent DKD.
The overall goal of this project is to characterize the molecular, morphometric, and metabolic features of DKD over the modern clinical course of T1D. The investigators hypothesize that perturbed kidney energetics and hypoxia are central metabolic pathways in the development of DKD. Kidney hypoxia stems from a mismatch between increased renal energy demand (e.g., increased glomerular filtration rate [GFR] and tubular reabsorption of sodium) and impaired substrate metabolism (e.g., IR and mitochondrial dysfunction) and results in activation of the hypoxia-inducible factor (HIF) system. Although upregulation of HIF1α confers favorable short-term effects, sustained activation promotes cellular injury. Supporting these hypotheses, data from our group and others have shown that obesity, IR, and The investigators also found that youth with T1D exhibit kidney hypoxia by MRI that strongly associates with IR and mitochondrial dysfunction. Moreover, our preliminary single-cell RNA sequencing (scRNA-seq) data from kidney biopsies demonstrate upregulated tubular expression of HIF1α in adults with T1D vs. healthy controls. The investigators propose to build a unique new longitudinal kidney biopsy cohort (N=100) spanning the critical duration of T1D over which DKD initiates and progresses (5-30 years). Participants will be enrolled from our existing CROCODILE study (adding longitudinal follow-up to completed kidney biopsies and baseline data and biosample acquisition) and from new enrollment at the University of Colorado and University of Washington. Normative kidney biopsy data will be provided from our existing cohort of healthy controls (N=20) and the Kidney Precision Medicine Project (KPMP). The investigators will implement state-of-the-art molecular (scRNA-seq) and morphometric interrogation of kidney tissue and rigorous metabolic phenotyping to include kidney magnetic resonance imaging (MRI), direct measurements of glycemia (continuous glucose monitoring), intraabdominal fat (dual-energy X-ray absorptiometry), estimation of insulin sensitivity by a T1D-validated equation, and (in a subset) GFR (iohexol clearance) and renal plasma flow (p-aminohippurate clearance). Participants will be followed longitudinally for DKD outcomes. A subset of 20 participants will undergo repeat kidney biopsies and associated procedures 3 years after baseline kidney biopsy. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05653518 -
Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes
|
N/A | |
Enrolling by invitation |
NCT05515939 -
Evaluating the InPen in Pediatric Type 1 Diabetes
|
||
Completed |
NCT05109520 -
Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
|
||
Recruiting |
NCT04016987 -
Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes
|
N/A | |
Active, not recruiting |
NCT04190368 -
Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes
|
N/A | |
Recruiting |
NCT05413005 -
Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus
|
Early Phase 1 | |
Active, not recruiting |
NCT04668612 -
Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes
|
N/A | |
Completed |
NCT02837094 -
Enhanced Epidermal Antigen Specific Immunotherapy Trial -1
|
Phase 1 | |
Recruiting |
NCT05414409 -
The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action
|
Phase 2 | |
Recruiting |
NCT05670366 -
The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes
|
N/A | |
Active, not recruiting |
NCT05418699 -
Real-life Data From Diabetic Patients on Closed-loop Pumps
|
||
Completed |
NCT04084171 -
Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6
|
N/A | |
Recruiting |
NCT06144554 -
Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
|
||
Recruiting |
NCT05153070 -
Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes
|
Phase 2 | |
Recruiting |
NCT05379686 -
Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes
|
N/A | |
Completed |
NCT05281614 -
Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D
|
Early Phase 1 | |
Withdrawn |
NCT04259775 -
Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes
|
N/A | |
Active, not recruiting |
NCT01600924 -
Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
|
||
Completed |
NCT02750527 -
Pediatric Population Screening for Type 1 Diabetes and Familial Hypercholesterolemia in Lower Saxony, Germany
|
||
Completed |
NCT02855307 -
Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes
|
Phase 2 |