Clinical Trials Logo

Clinical Trial Summary

Islet transplantation is a relatively new procedure used in people with difficult to control Type 1 diabetes. Insulin producing cells (islets) are isolated from a pancreas of a deceased organ donor. After the cells are carefully prepared, the islets are transplanted into patient's body. These transplanted islets may produce insulin for the patient. Patient may be able to reduce or eliminate the need for insulin injections for an unknown period of time. Patients who receive an islet transplant may need to stay on powerful immunosuppressive drugs for as long as the islets remain alive and working. These drugs help to prevent the immune system from attacking the transplanted islets. Under current standard of care procedure, islets are transplanted into patient's liver. The investigators have learned that some of these cells do not survive the current procedure and are lost around the time of transplant. Therefore in this study, the investigators are studying a new transplant procedure that may help prevent this islet cell loss. The new procedure involves transplanting the islets into an omental pouch instead of into the liver. The omentum is a large apron-like fold of membrane inside the abdomen that drapes over the intestines. This study will test to see if omental islet transplantation is safe and effective. Standard immunosuppressive medicines (anti-thymocyte globulin, tacrolimus, mycophenolic acid, sirolimus, etanercept) will be used in this study to prevent rejection of the islets. This study is a collaborative research with the University of Miami, and the same study protocol has been in use over there. Recruitment in Edmonton will continue until all subjects [N=6] needed for the study are transplanted. All subjects in this study will receive islet transplants using the study procedure.


Clinical Trial Description

BACKGROUND Current islet transplantation into the portal vein of the liver has shown the unique ability of islets to stabilize blood glucose levels and prevent severe hypoglycemia in a selected group of subjects with type 1 diabetes. The main limitations of islet transplantation are the need for systemic immunosuppression to maintain function and the loss of islet function over time. Additionally, many studies have demonstrated that the current site of transplantation in the liver is not an ideal site due to several factors. These factors include (1) significant liver inflammation following islet infusion; (2) potential for life-threatening procedure-related complications such as bleeding and thrombosis; (3) high levels of immunosuppressive drugs and GI toxins in the liver contributing to islet toxicity; (4) the inability to retrieve islets after infusion; and (5) development of graft dysfunction in a number of recipients of intrahepatic allogeneic and autologous islets. Based on these premises, development of a clinical protocol for the implantation of islets into the omentum is a desirable goal. As an attempt to maximize the engraftment of islet cell clusters onto the omentum, implantation site should promote islet adherence to the omental peritoneal layer and avoid cell pelleting. Dr. Alejandro's team at University of Miami has recently performed a series of experiments in animal models of diabetes to assess the feasibility of transplanting pancreatic islets in the omentum using a plasma-thrombin gel. With that approach, the islets are re-suspended in either donor or autologous plasma and distributed in the omental pouch (created by sutures) to avoid pelleting. Cell adherence is achieved by addition of clinical-grade recombinant human thrombin that reacts with plasma to create a biocompatible, degradable gel containing the islet graft. The investigators have outlined the initial patient trial as 6 subjects, based on clinical judgment and extensive experience in clinical islet transplantation trials. If initial safety and efficacy is satisfactory (no adverse events related to the transplantation and efficacy in 2 of the 3 first transplanted subjects), the investigators will transplant 3 additional subjects. OBJECTIVES Primary Objective Safety: To demonstrate the safety of islet transplantation into an omental pouch site for the treatment of subjects with type 1 diabetes (T1D). Secondary Objective Efficacy: To demonstrate the efficacy of islet transplantation into an omental pouch site for the treatment of T1D in subjects with hypoglycemia unawareness and a history of severe hypoglycemic episodes. Primary Endpoints The primary safety endpoint is to demonstrate patient safety throughout all stages of the trial. The primary efficacy endpoint is the proportion of subjects with HbA1c ≤6.5% at 1 year AND free of severe hypoglycemic events from Day 28 to Day 365, inclusive, after the islet transplant. Secondary Endpoints Secondary efficacy endpoints: At 75±7, 365 ± 14 ,and 730 ± 14 days following the islet transplant(s): the percent reduction in insulin requirements; HbA1c; Mean Amplitude of Glycemic Excursions (MAGE); Lability Index (LI); Ryan hypoglycemia severity (HYPO) score; Clarke score; number of severe hypoglycemic episodes; basal (fasting) and 90-min glucose and c-peptide derived from the mixed-meal tolerance test (MMTT); beta-score; C-peptide creatinine ratio; acute insulin response to glucose (AIRglu), insulin sensitivity, and disposition index derived from the insulin-modified frequently-sampled intravenous glucose tolerance (FSIGT) test; glucose variability and hypoglycemia duration derived from the continuous glucose monitoring system® (CGMS); and Quality of life (QOL) measures: EuroQol five dimensions questionnaire (EQ-5D), Hypoglycemia Fear Survey (HFS), SF-36v2, Diabetes Distress scale). Secondary safety endpoints: Safety, including incidence of post-transplant infections, malignancies, morbidity, and other adverse events (AEs) (e.g., increased body weight and hypertension) associated with conventional immunosuppression. Renal function as measured by serum creatinine, glomerular filtration rate (GFR) and other relevant laboratory parameters. Lipid profiles (triglycerides, total cholesterol, LDL cholesterol, HDL cholesterol) over time. At 75 ± 7 and 365 ± 14 days following the islet transplant, and at two years following the final islet transplant: the incidence and severity of AEs related to the islet transplant procedure including: bleeding (>2 g/dL decrease in hemoglobin concentration); wound complication (infection or subsequent hernia); torsion of omentum; gastrointestinal obstruction; abscess; cysts; need for surgical intervention. The incidence and severity of AEs related to the immunosuppression including: allergy; reduction in GFR; addition or intensification of antihyperlipidemic therapy; gastrointestinal toxicity; neutropenia, anemia, or thrombocytopenia; viral, bacterial, or fungal infections; and benign or malignant neoplasms. The incidence of immune sensitization defined by presence of anti-HLA antibodies absent prior to transplantation. The incidence of discontinuation of immunosuppression. PROCEDURES Prior to transplantation, the patient is screened, qualified, listed for transplant, and signs the informed consent form. At the time a suitable islet preparation becomes available, the patient will receive allogeneic islet cells placed in an omental pouch. The details of this surgical procedure will be addressed in Question 5.0. Islet transplant will be performed under Anti-Thymocyte Globulin (ATG, Thymoglobulin®) induction immunosuppression (5 doses, day -2 prior to transplant to day 2 post-transplant). Maintenance mycophenolate mofetil (MMF) therapy (1-2 g/day as BID dosing) will be started on Day -1 pre-transplant. Tacrolimus will be administered orally twice daily on Day 1 post-transplant to maintain a trough level of 10-12 ng/mL for 3 months, then 6-10 ng/mL thereafter. Etanercept will be given IV before the islet transplant (50 mg), and then at 25 mg (subcutaneously) on post-operative day (POD) +3, +7 and +10. FOLLOW UP Subject will undergo a 24-month follow-up period following their islet transplant. 19 study visits during the first year after the transplant, and 4 more study visits during the 2nd year after the transplant. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02821026
Study type Interventional
Source University of Alberta
Contact
Status Completed
Phase Phase 1/Phase 2
Start date May 2016
Completion date November 13, 2019

See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02855307 - Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes Phase 2
Completed NCT02750527 - Pediatric Population Screening for Type 1 Diabetes and Familial Hypercholesterolemia in Lower Saxony, Germany