Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to test the ability of an advanced external Physiologic Insulin Delivery (ePID) algorithm (a step by step process used to develop a solution to a problem) to get acceptable meal responses over a range of gain. Gain is defined as how much insulin is given in response to a change in a patient's glucose level.

This study also examines the effectiveness of the external Physiologic Insulin Delivery (ePID) closed-loop insulin delivery computer software. The investigators would like to assess whether fasting target levels can be achieved as the closed-loop gain increases or decreases, and to evaluate the system's ability to produce an acceptable breakfast meal response.


Clinical Trial Description

There have been significant advances in diabetes management technology, including more sophisticated insulin pumps and more accurate real-time continuous glucose monitors. The next technological development is widely thought to be the introduction of an algorithm linking the pump and sensor to form a closed-loop insulin delivery system. The algorithm used for this purpose needs to be robust to changes in an individual's insulin sensitivity, and the sensor's sensitivity to glucose. Insulin sensitivity (how much the patient's glucose level changes in response to a change in insulin delivery) and algorithm gain (how much insulin is delivered in response to a change in glucose) determine the systems overall closed-loop gain. Ideally, the overall gain can be set to achieve the lowest possible peak postprandial glucose response without postprandial hypoglycemia. However, if the algorithm's gain is set to a fixed value and the subject's insulin sensitivity changes, the overall-gain will change. Some degradation in closed-loop performance might be acceptable during periods whenever the subject's insulin sensitivity is low (i.e., the subject is insulin resistant) and the risk of hypoglycemia may actually be reduced. However, if the subject becomes more sensitive the system may become less stable and the risk of postprandial hypoglycemia may increase. In addition to changes in insulin sensitivity, glucose sensors will sometimes over- or under-read blood glucose as sensor sensitivity increases or decreases. This will result in a change in the closed-loop algorithm's effective target. The purpose of this study is to evaluate the ability of an advanced Physiologic Insulin Delivery algorithm to achieve an acceptable breakfast response as the gain and effective target glucose level changes. Specifically:

1. to assess the fasting glucose levels achieved as the overall closed-loop gain and effective target is increased or decreased, and

2. determine the system's ability to produce an acceptable breakfast meal response under these conditions ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02065895
Study type Interventional
Source Joslin Diabetes Center
Contact
Status Completed
Phase N/A
Start date December 2013
Completion date April 2015

See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02855307 - Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes Phase 2
Completed NCT02914886 - Beneficial Effect of Insulin Glulisine by Lipoatrophy and Type 1 Diabetes (LAS) Phase 4