Clinical Trials Logo

Clinical Trial Summary

Manually suspending an insulin pump at the beginning of aerobic exercise reduces the risk of exercise-associated hypoglycemia (low blood sugar) in patients with type 1 diabetes (T1D). However, since patients with T1D often do not make exercise-related adjustments to their insulin regimen, our group has developed an algorithm to initiate pump suspension in a user-independent manner upon projecting exercise-associated hypoglycemia. The current study seeks to test the efficacy of this algorithm by asking users to participate in a sports camp while wearing an insulin pump, continuous glucose monitor, and accelerometer/heart rate monitor (to detect exercise), which will communicate electronically to a pump shutoff algorithm. On one of the days the algorithm will be used, while on the other day their normal insulin rate will continue for comparative purposes.

The investigators hypothesize that the use of an accelerometer-augmented computer algorithm for insulin pump suspension during exercise will result in significantly fewer episodes of hypoglycemia (both during exercise and in post-exercise monitoring) than in exercise without a pump suspension algorithm.


Clinical Trial Description

Regular aerobic exercise confers a plethora of health benefits to all individuals and is considered an essential component of the management of type 1 diabetes (T1D) [1]. However, in contrast to non-diabetic subjects - in whom the increased muscle energy requirement during exercise leads to suppression of endogenous insulin secretion - patients with T1D are dependent upon exogenous insulin and are thus at risk for exercise-associated hypoglycemia [1]. Exercise-associated hypoglycemia is the most frequently reported adverse event related to exercise in diabetes [2] and hypoglycemia can occur during exercise or several hours afterwards [3,4]. Although previous research has shown that pre-meal dose reduction of subcutaneous insulin can be effective at decreasing the incidence of exercise-associated hypoglycemia [5], patients with T1D often do not perform such adjustments [6,7].

In contrast to subcutaneous insulin injections, which are reliant upon the patient or caretaker to determine dosage, the insulin pump provides a unique opportunity to avoid hypoglycemia via user-independent, computer-based algorithms for determining insulin delivery. Previous research conducted here at Stanford has demonstrated that algorithms based on continuous glucose monitor (CGM) data can prevent hypoglycemia in the sedentary setting by inducing insulin pump suspension [8-10]. In addition, a study of children and adolescents conducted at Stanford (as a center in the DirecNet group) demonstrated that suspending an insulin pump at the beginning of a period of moderate aerobic exercise reduces the risk of hypoglycemia during that exercise period and subsequently overnight [11]. Thus, by utilizing exercise-detecting accelerometers and an algorithm to initiate pump suspension during exercise, it is likely possible that people with diabetes could avoid exercise-associated hypoglycemia even if they failed to manually alter their pump settings. However, to date, no published studies have utilized accelerometer-derived data in an insulin pump suspension algorithm during exercise.

Accelerometers are light-weight motion-sensing devices that can be worn to provide information about the intensity and duration of physical activity [12]. They are small, inexpensive, and could easily be incorporated into current sensors and "patch" pumps. They can also be used independently or combined with a heart rate monitor (HRM) [13], although most commercially available HRMs currently require a chest strap that can be uncomfortable to wear. Previous studies evaluating the effect of physical activity on insulin sensitivity have utilized accelerometers (worn on a belt at the small of the back, the right side of the trunk in the mid-axillary line, or the left side of the chest) with and without HRMs for activity recognition during subjects' everyday lives. These data were used to classify activity as sedentary, light, moderate, or vigorous based on acceleration signal counts measured over one-minute intervals [13-17]. One study investigated four different accelerometers in a clinical research setting and found each to be very accurate in assessing the intensity of physical activity, regardless of subjects' body habitus [18]. Thus, these devices can provide a reliable means by which the onset, duration, and intensity of exercise can be recognized and reported in real-time to the other components of an artificial pancreas. When combined with CGM and insulin delivery data, this exercise information is a valuable tool in designing an algorithm to decrease or stop insulin delivery in order to decrease the risk of exercise-associated hypoglycemia.

In the first phase of this study (in press), 22 subjects with type 1 diabetes went about their everyday lives while wearing an insulin pump, CGM, and accelerometer/heart rate monitor. After the monitoring period, the devices were downloaded and the data were used to augment an existing predictive low glucose suspend (PLGS) algorithm to incorporate activity. In a computer simulator, the PLGS algorithm reduced hypoglycemia by 64%, compared to 73% and 76% reductions for the accelerometer-augmented and HRM-augmented algorithms, respectively.

In the next phase of this study, we seek to test the newly developed algorithm in a real-life setting in the form of a structured sports (soccer) camp to further see if modifications to the algorithm are required. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02047643
Study type Interventional
Source Stanford University
Contact
Status Completed
Phase N/A
Start date March 12, 2014
Completion date May 1, 2014

See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02855307 - Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes Phase 2
Completed NCT02914886 - Beneficial Effect of Insulin Glulisine by Lipoatrophy and Type 1 Diabetes (LAS) Phase 4