Clinical Trials Logo

Clinical Trial Summary

This study is designed to investigate the effects of diabetes mellitus and its treatment upon the body's responses to low blood glucose (blood sugar) levels. Diabetes is a medical condition in which blood glucose can rise very high. Treatment of diabetes mellitus involves giving insulin (a hormone), which can occasionally cause blood glucose to fall too low. The body responds to low glucose levels by producing a number of hormones, which act against the insulin to help correct the low blood glucose. These hormones also provide symptoms which warn that the glucose is falling too far. These protective warnings by the body may be different in people with diabetes. We want to test whether this also means that diabetes changes the sensitivity of brain function to a lowering of blood glucose levels. In order to answer this question, we need to compare the response of people with diabetes with the response of people who do not have diabetes. The plan of the study is to lower the subject's blood glucose using insulin, while measuring what changes occur in brain function using what is called functional magnetic resonance imaging (fMRI).


Clinical Trial Description

Previous studies have shown that a person with type 1 diabetes is less likely to suffer the long term microvascular complications of diabetes (eye, kidney and nerve damage) if they strive to achieve as near normal a blood glucose as possible. Unfortunately the tighter the blood glucose control is, the more likely the subject is to suffer episodes of hypoglycemia. Hypoglycemia is often the aspect of diabetes management most feared by people with diabetes and may cause more anxiety than the threat of advanced complications. For many people with diabetes the problem of hypoglycemia is compounded by the development of the syndrome of hypoglycemia unawareness. One aspect of hypoglycemia unawareness is impairment of the hormones normally released as blood glucose falls. Hypoglycemia triggers a release of such insulin antagonists as epinephrine, norepinephrine, glucagon, growth hormone and cortisol. These hormones act synergistically with the autonomic nervous system to raise blood glucose, counteracting insulin and restoring normoglycemia. These homeostatic mechanisms are also responsible for some of the early symptoms of low blood glucose, providing a warning to insulin-treated diabetics as glucose falls. A number of studies including research from this unit have established that strict metabolic control is associated with impairment of the normal counterregulatory response to hypoglycemia and a loss of hypoglycemia awareness. The brain is central to the recognition of hypoglycemia and the coordination of the counterregulatory response. Neural tissue depends mainly on glucose for its energy supply. As circulating glucose falls beneath the level needed to maintain glucose transport across the blood-brain barrier, a variety of defense mechanisms are activated, including symptoms of cognitive dysfunction. However, the precise nature and causes of the adverse CNS effects of hypoglycemia are not well understood. Functional magnetic resonance imaging (fMRI) provides a tool to measure the effects of hypoglycemia on the patterns and magnitudes of neuronal activation in the human brain, in both normal and diabetic subjects. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00580710
Study type Observational
Source Yale University
Contact
Status Completed
Phase
Start date August 2001
Completion date November 1, 2018

See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02855307 - Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes Phase 2
Completed NCT02914886 - Beneficial Effect of Insulin Glulisine by Lipoatrophy and Type 1 Diabetes (LAS) Phase 4