Type 1 Diabetes Mellitus Clinical Trial
— CARBEX1Official title:
Exercise-related Fuel Metabolism and Glucose Stability in Individuals With Type 1 Diabetes Mellitus
Verified date | August 2016 |
Source | University Hospital Inselspital, Berne |
Contact | n/a |
Is FDA regulated | No |
Health authority | Switzerland: Ethikkommission |
Study type | Interventional |
Whereas physical activity clearly results in improvements in glycemic control in type 2 diabetes, in individuals with type 1 diabetes (T1DM) the impact of exercise on blood sugar control is more complex. In type 1 diabetes T1DM the inability to reduce exogenous insulin levels during exercise is a key factor that contributes to an increased risk of exercise-induced hypoglycemia. Since rapid adaptation of insulin dosage may be especially difficult in patients on a multiple daily injection regimen, alternative strategies are required to improve exercise-associated glucose stability. There is increasing evidence that the combination of steady state continuous low to moderate intensity exercise with short bursts of high intensity exertion (eg in the form of sprints) is an effective, well tolerated, novel strategy to prevent exercise-related hypoglycemia. A further promising option to stabilize blood sugar levels during and after exercise may be the ingestion of fructose in addition to glucose in form of a sport drink.
Status | Completed |
Enrollment | 27 |
Est. completion date | July 2016 |
Est. primary completion date | July 2016 |
Accepts healthy volunteers | No |
Gender | Male |
Age group | 18 Years to 35 Years |
Eligibility |
Inclusion Criteria: - Male - Aged 18 to 35 years - Diabetes mellitus duration for at least 5 years - No change in insulin regimen for at least 3 months prior to the study - Under acceptable to good metabolic control - Normal insulin sensitivity - Regular physical activity - BMI in the range of 18-25 kg/m2 - Written informed consent Exclusion Criteria - Diabetes-related complications (macro and microvascular) - Anemia (hemoglobin concentration <130g/l) - Abnormal thyroid function - Dyslipidemia - Major depression, psychosis and other severe personality disorders, claustrophobia - Active neoplasia - Contraindications to exposure to a 3 T magnetic field - Abnormal liver or renal function - Smoking, drug abuse, or daily alcohol consumption >60g - Participation in another study - Medication other than insulin |
Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Crossover Assignment, Masking: Open Label, Primary Purpose: Supportive Care
Country | Name | City | State |
---|---|---|---|
Switzerland | Division of Endocrinology, Diabetes and Clinical Nutrition, Bern University Hospital | Bern |
Lead Sponsor | Collaborator |
---|---|
University Hospital Inselspital, Berne | University of Bern, University of Lausanne |
Switzerland,
Bussau VA, Ferreira LD, Jones TW, Fournier PA. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia. 2007 Sep;50(9):1815-8. Epub 2007 Jun 22. — View Citation
Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006 Mar;29(3):601-6. — View Citation
Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005 Jun;28(6):1289-94. — View Citation
Guelfi KJ, Ratnam N, Smythe GA, Jones TW, Fournier PA. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab. 2007 Mar;292( — View Citation
Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus. Diabet Med. 2011 Jul;28(7):824-32. doi: 10.1111/j.1464-5491.2011. — View Citation
Jenni S, Oetliker C, Allemann S, Ith M, Tappy L, Wuerth S, Egger A, Boesch C, Schneiter P, Diem P, Christ E, Stettler C. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus--a prospective single-blin — View Citation
Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010 N — View Citation
Stettler C, Jenni S, Allemann S, Steiner R, Hoppeler H, Trepp R, Christ ER, Zwahlen M, Diem P. Exercise capacity in subjects with type 1 diabetes mellitus in eu- and hyperglycaemia. Diabetes Metab Res Rev. 2006 Jul-Aug;22(4):300-6. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Amount of exogenous glucose required to maintain glycemia within a range between 7-10mM | 30 minutes (last 30 minutes of 90 min exercise period) | Yes | |
Secondary | Exercise - related glycogen consumption | 90 minutes | No | |
Secondary | Glucose kinetics | Rate of glucose appearance and disappearance | 180 minutes | No |
Secondary | Counterregulatory hormones, metabolites, and inflammatory response | 300 minutes | No | |
Secondary | Spiroergometric parameters | CO2 and O2 production, RER | 180 minutes | No |
Secondary | Pre- and post-exercise glycemic excursions | 72 h pre-exercise and 72 h post-exercise respectively | No | |
Secondary | Heart rate variability | 90 minutes | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04476472 -
Omnipod Horizon™ Automated Glucose Control System Preschool Cohort
|
N/A | |
Completed |
NCT03635437 -
Evaluation of Safety and Diabetes Status Upon Oral Treatment With GABA in Patients With Longstanding Type-1 Diabetes
|
Phase 1/Phase 2 | |
Completed |
NCT04909580 -
Decision Coaching for Youth and Parents Considering Insulin Delivery Methods for Type 1 Diabetes
|
N/A | |
Active, not recruiting |
NCT00679042 -
Islet Transplantation in Type 1 Diabetic Patients Using the University of Illinois at Chicago (UIC) Protocol
|
Phase 3 | |
Completed |
NCT03293082 -
Preschool CGM Use and Glucose Variability in Type 1 Diabetes
|
N/A | |
Completed |
NCT04016662 -
Automated Insulin Delivery in Elderly With Type 1 Diabetes (AIDE T1D)
|
Phase 4 | |
Completed |
NCT02527265 -
Afrezza Safety and Pharmacokinetics Study in Pediatric Patients
|
Phase 2 | |
Completed |
NCT03738865 -
G-Pen Compared to Glucagen Hypokit for Severe Hypoglycemia Rescue in Adults With Type 1 Diabetes
|
Phase 3 | |
Completed |
NCT03240432 -
Wireless Innovation for Seniors With Diabetes Mellitus
|
N/A | |
Completed |
NCT03168867 -
Effectiveness Trial of an E-Health Intervention To Support Diabetes Care in Minority Youth (3Ms)
|
N/A | |
Completed |
NCT03674281 -
The VRIF Trial: Hypoglycemia Reduction With Automated-Insulin Delivery System
|
N/A | |
Completed |
NCT03669770 -
Ultrasound Classification and Grading of Lipohypertrophy and Its Impact on Glucose Variability in Type 1 Diabetes
|
||
Recruiting |
NCT03682640 -
Azithromycin Insulin Diet Intervention Trial in Type 1 Diabetes
|
Phase 2 | |
Recruiting |
NCT04096794 -
Chinese Alliance for Type 1 Diabetes Multi-center Collaborative Research
|
||
Completed |
NCT02882737 -
The Impact of Subcutaneous Glucagon Before, During and After Exercise a Study in Patients With Type 1 Diabetes Mellitus
|
N/A | |
Recruiting |
NCT02745808 -
Injectable Collagen Scaffold™ Combined With HUC-MSCs for the Improvement of Erectile Function in Men With Diabetes
|
Phase 1 | |
Withdrawn |
NCT02579148 -
Collagen Scaffolds Loaded With HUCMSCs for the Improvement of Erectile Function in Men With Diabetes
|
Phase 1 | |
Withdrawn |
NCT02518022 -
How to be Safe With Alcoholic Drinks in Diabetes
|
N/A | |
Completed |
NCT02596204 -
Diabetes Care Transformation: Diabetes Data Registry and Intensive Remote Monitoring
|
N/A | |
Completed |
NCT02562313 -
A Trial Investigating the Continuous Subcutaneous Insulin Infusion of a Liquid Formulation of BioChaperone Insulin Lispro in Comparison to Humalog®
|
Phase 1 |