Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01736553
Other study ID # NN101
Secondary ID U01NS079163
Status Completed
Phase
First received
Last updated
Start date December 2012
Est. completion date September 2015

Study information

Verified date April 2018
Source Ohio State University
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Spinal muscular atrophy (SMA) is the leading genetic cause of death of infants. Strong preclinical evidence suggests that effective therapy must be delivered as early as possible to prevent progression of the disease. The primary study objective will be to identify prognostic and surrogate biomarkers of disease progression that will facilitate the execution of therapeutic SMA clinical trials in infants.


Description:

Aim 1. To establish the validity of putative physiological SMA biomarkers in the immediate postnatal period. A longitudinal, natural history examination of physiological markers of muscle innervation will be performed in healthy and SMA infants. The first week of life is the ideal first time point, with visits occurring at scheduled visits up to the age two. Compound motor action potential (CMAP) amplitude and electrical impedance myography (EIM) will be examined and will be correlated with motor function. Each of these is associated with muscle innervation and provides information on the number and function of lower motor neurons in the spinal cord, the cellular target of SMA therapeutic interventions. This trial will establish the natural history of these putative SMA biomarkers as the disease evolves in affected infants. Moreover, our approach will allow for measurements in pre-symptomatic and early symptomatic subjects and determine their predictive value.

Aim 2. To establish the validity of putative molecular SMA biomarkers in the immediate postnatal period. Survival Motor Neuron (SMN2) copy number is a valid, predictive molecular SMA biomarker; however, it is fixed, and therefore not useful as a biomarker of clinical progression or response to therapy. SMN messenger Ribonucleic acid (mRNA) ( and protein expression is variable in different cell types and, in mice, naturally decreases with age postnatally. In this study, SMN expression levels will be measured longitudinally in SMA patients and controls. Additional putative molecular SMA markers that have been identified to correlate with motor function will be determined in an effort to distinguish between predictive markers that change prior to development of weakness and those that change as a consequence of weakness.


Recruitment information / eligibility

Status Completed
Enrollment 53
Est. completion date September 2015
Est. primary completion date September 2015
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group N/A to 6 Months
Eligibility Inclusion Criteria:

All infants will be between 0-6 months of age at the time of enrollment. Parents or guardians of the enrolled infants must sign an informed consent form prior to any study procedure being performed.

The infants with SMA must have already had a positive DNA test outside of the study to qualify for enrollment. An infant with SMA can have any number of SMN2 gene copies. Knowledge of the number of SMN2 gene copies prior to enrollment is not required.

Healthy control infants who meet the following criteria will be enrolled:

- Birth between 36 and 42 weeks inclusive of gestation

- Siblings of children with SMA must have had prior SMA genetic testing completed con-firming the infant is a healthy control

- Principal investigator feels the family/infant is able and willing to comply with study procedures

- Parent or guardian able to give informed consent

SMA infants who meet the following criteria will be enrolled:

- Birth between 36 and 42 weeks inclusive of gestation

- Positive SMN1 gene mutation/deletion

- Principal investigator feels the family/infant is able and willing to comply with study procedures

- Parent or guardian able to give informed consent

Exclusion Criteria:

- Use of any putative therapy intended to increase the amount of SMN protein in cells

- Enrollment in an SMA therapeutic trial at the time of enrollment in the SMA biomarker study

- Have a systemic illness requiring ongoing treatment, such as pneumonia

- Clinically significant abnormal findings (as determined by the investigator) on the physical examination or medical history (including history of tracheostomy tubes and ventilator-dependency)

- Dependency upon non-invasive ventilatory support (ie: BiPAP) for more than 12 hours/day

Study Design


Locations

Country Name City State
United States Children's Hospital Colorado Aurora Colorado
United States Boston Children's Hospital Boston Massachusetts
United States Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
United States Nationwide Children's Hospital Columbus Ohio
United States Children's Medical Center of Dallas Dallas Texas
United States University of California - Davis Davis California
United States Children's Mercy Hospital Kansas City Missouri
United States University of California - Los Angeles Los Angeles California
United States Vanderbilt University Nashville Tennessee
United States Columbia University Medical Center New York New York
United States Doernbecher Children's Hospital Portland Oregon
United States Washington University in St. Louis School of Medicine Saint Louis Missouri
United States University of Utah Health Sciences Center Salt Lake City Utah
United States State University of New York Upstate Medical Center Syracuse New York
United States Children's National Medical Center Washington District of Columbia

Sponsors (5)

Lead Sponsor Collaborator
Ohio State University Cure SMA, Massachusetts General Hospital, National Institute of Neurological Disorders and Stroke (NINDS), University of Iowa

Country where clinical trial is conducted

United States, 

References & Publications (17)

Campbell SK, Swanlund A, Smith E, Liao PJ, Zawacki L. Validity of the TIMPSI for estimating concurrent performance on the test of infant motor performance. Pediatr Phys Ther. 2008 Spring;20(1):3-10. doi: 10.1097/PEP.0b013e31815f66a6. — View Citation

Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, Carcenac R, Astord S, Pereira de Moura A, Voit T, Barkats M. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011 Feb 15;20(4):681-93. doi: 10.1093/hmg/ddq514. Epub 2010 Nov 30. — View Citation

Finkel RS, Hynan LS, Glanzman AM, Owens H, Nelson L, Cone SR, Campbell SK, Iannaccone ST; AmSMART Group. The test of infant motor performance: reliability in spinal muscular atrophy type I. Pediatr Phys Ther. 2008 Fall;20(3):242-6. doi: 10.1097/PEP.0b013e318181ae96. — View Citation

Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH, Kaspar BK. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010 Mar;28(3):271-4. doi: 10.1038/nbt.1610. Epub 2010 Feb 28. — View Citation

Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010 Aug 1;24(15):1634-44. doi: 10.1101/gad.1941310. Epub 2010 Jul 12. — View Citation

Kolb SJ, Gubitz AK, Olszewski RF Jr, Ottinger E, Sumner CJ, Fischbeck KH, Dreyfuss G. A novel cell immunoassay to measure survival of motor neurons protein in blood cells. BMC Neurol. 2006 Feb 1;6:6. — View Citation

Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol. 2011 Aug;68(8):979-84. doi: 10.1001/archneurol.2011.74. Epub 2011 Apr 11. — View Citation

Le TT, McGovern VL, Alwine IE, Wang X, Massoni-Laporte A, Rich MM, Burghes AH. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet. 2011 Sep 15;20(18):3578-91. doi: 10.1093/hmg/ddr275. Epub 2011 Jun 13. — View Citation

Lutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE, Li DK, Pellizzoni L, Rojas J, Valenzuela DM, Murphy AJ, Winberg ML, Monani UR. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. 2011 Aug;121(8):3029-41. doi: 10.1172/JCI57291. Epub 2011 Jul 25. — View Citation

Morton JP, MacLaren DP, Cable NT, Bongers T, Griffiths RD, Campbell IT, Evans L, Kayani A, McArdle A, Drust B. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol (1985). 2006 Jul;101(1):176-82. Epub 2006 Mar 24. — View Citation

Narver HL, Kong L, Burnett BG, Choe DW, Bosch-Marcé M, Taye AA, Eckhaus MA, Sumner CJ. Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition. Ann Neurol. 2008 Oct;64(4):465-70. doi: 10.1002/ana.21449. — View Citation

Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, Hua Y, Rigo F, Matson J, Hung G, Kaye EM, Shihabuddin LS, Krainer AR, Bennett CF, Cheng SH. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011 Mar 2;3(72):72ra18. doi: 10.1126/scitranslmed.3001777. — View Citation

Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ. Construction and validation of the Alberta Infant Motor Scale (AIMS). Can J Public Health. 1992 Jul-Aug;83 Suppl 2:S46-50. — View Citation

Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, Wilton SD, Burghes AH. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. 2012 Apr 1;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub 2011 Dec 20. — View Citation

Rutkove SB, Shefner JM, Gregas M, Butler H, Caracciolo J, Lin C, Fogerson PM, Mongiovi P, Darras BT. Characterizing spinal muscular atrophy with electrical impedance myography. Muscle Nerve. 2010 Dec;42(6):915-21. doi: 10.1002/mus.21784. — View Citation

Tiziano FD, Pinto AM, Fiori S, Lomastro R, Messina S, Bruno C, Pini A, Pane M, D'Amico A, Ghezzo A, Bertini E, Mercuri E, Neri G, Brahe C. SMN transcript levels in leukocytes of SMA patients determined by absolute real-time PCR. Eur J Hum Genet. 2010 Jan;18(1):52-8. doi: 10.1038/ejhg.2009.116. — View Citation

Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, Azzouz M. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med. 2010 Jun 9;2(35):35ra42. doi: 10.1126/scitranslmed.3000830. — View Citation

* Note: There are 17 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Motor Function Assessments- Test for Infant Motor Performance Screening Items (TIMPSI) Describe & compare the distribution of motor function assessments over the first two years of life in SMA vs. healthy control infants.
The TIMPSI is used to assess the postural and selective control of movement typically used by infants younger than 5 months. The TIMPSI scores were related to an infant's ability to reach. The TIMPSI is a 29-item evaluation that contains 3 item sets: a Screening set, an Easy set, and a Hard set. The Screening set consists of 11 items from the TIMP, each with a 5- to 7-point rating scale; the Easy set has 6 items with 5- or 6-point rating scales and 4 dichotomously scored items; the Hard set has 8 items, 3 with 5-point rating scales and 5 items that are scored dichotomously. The Total score is derived from all subset scores and is the sum of those subset scores. The final score could range from 0 to 99 points. The higher the score the better the functional ability of the participant. Linear mixed effects models were used for analyses.
Up to 24 months
Primary Motor Function Assessments- The Children's Hospital of Philadelphia Infant Test for Neuromuscular Disorders (CHOP-INTEND) The TIMPSI motor function testing was done during all of the study visits knowing that the healthy controls would eventually ceiling out. The study design allowed for secondary motor function tests based on the score of the TIMPSI. If infants scored a 41 or above on the TIMPSI they would be tested with the AIMS. If they were below they were tested with the CHOP-INTEND. The CHOP-INTEND is a reliable and validated, comprehensive assessment of the postural and selective control of movement needed by infants. It is a clinician-rated questionnaire developed to assess motor skill in spinal muscular atrophy type I. The 16 items are scored from 0 to 4. The global score ranges from 0 to 64, a higher score indicating better motor skills.(Finkel, McDermott, 2014). All healthy controls based upon scores at 6 months moved on to the AIMS test, therefore no healthy controls completed the CHOP-INTEND. Linear mixed effects models were used for analyses of Motor function outcome data. Up to 24 months
Primary Motor Function Assessments-Alberta Infant Motor Scale (AIMS) Linear mixed effects models were used for analyses.
The reason that the number of infants differ from those in participant flow is based upon the protocol. The selection of which secondary test to perform depended upon the score of the TIMPSI that was performed. TIMPSI <41, do CHOP-NTEND. TIMPSI > 41, do AIMS.
The AIMS incorporates the neuromaturational concept and the dynamical systems theory and is used to measure gross motor maturation of infants from birth through the age of independent walking (Piper, Pinnell et al. 1992, Piper, Darrah et al 1994). In the AIMS, the impact of neurological components on motor development is reflected by a sequence of motor skills, which are used as the basis of assessment. The AIMS consists of 58 items, including 4 positions: prone (21 items), supine (9 items), sitting (12 items) & standing(16 items). The highest score available is 58. The higher the score the better the functional ability of the participant.
Up to 24 months
Primary Putative Physiological Biomarker- Compound Motor Action Potential Testing (CMAP) Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA vs. healthy control infants.
Maximum ulnar CMAP amplitude and area will be obtained by recording from the abductor digitiminimi muscle following ulnar nerve stimulation at the wrist. All electrophysiologic testing will be performed by certified electromyographers experienced in the assessment of pediatric patients. Maximum values for both negative peak (NP) amplitude and NP area will be obtained. No medications will be used.
This test is done routinely in this population. Pediatric electrodes and each site's standard electromyograph devices will be utilized. The test, while not considered to be painful, may cause some discomfort similar to a static electric shock. Infants may whimper or cry due to the surprise of the shock. Each shock lasts approximately 0.1 millisecond. The testing duration is expected to be approximately 30 seconds.
Up to 24 months
Primary Molecular Biomarkers- mRNA Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA vs. healthy control infants.
Results were measured in survival motor neurons (SMN), hypoxanthine phosphoribosyltransferase (HPRT) Ratio.
Up to 24 months
Primary Molecular Biomarkers- SMN Protein Levels Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA vs. healthy control infants. Up to 24 months
Primary Putative Physiological Biomarkers-Weight Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA vs. healthy control infants. Up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for SMA Subjects- CMAP In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and CHOP-INTEND. In the CHOP-INTEND analyses, correlations were not estimable for the 18 and 24 month visits. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for SMA Subjects- mRNA In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and CHOP-INTEND. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for SMA Subjects- SMN Protein In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and CHOP-INTEND. In the CHOP-INTEND analyses, the correlation at the 24 month visit was not estimable. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for SMA Subjects- Weight In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and CHOP-INTEND. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for Healthy Control Subjects- CMAP In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and AIMS. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for Healthy Control Subjects- mRNA In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and AIMS. up to 24 months
Primary Correlation of Biomarkers With Motor Function Tests for Healthy Control Subjects- Weight In these analyses motor function score was the outcome measure. Correlation was defined as the estimated mean increase per a one unit increase in the biomarker under consideration. A linear mixed effects model was used to estimate the correlation between the biomarker and motor function score. Separate models were used for the TIMPSI and AIMS. up to 24 months
Secondary Biomarker Prediction of Risk of Death Examine whether any of the motor function assessments, putative physiological, or molecular biomarkers predict risk of death in the SMA cohort. Proportional hazards regression models used to determine if motor function scores, mRNA, and protein levels predict death in SMA subjects. Considered each predictor separately modeled as a time-varying covariate (predictor values were allowed to vary as time to death was assessed). Up to 24 months
Secondary Motor Function Assessments- Test for Infant Motor Performance Screening Items (TIMPSI) SMN Copy Number =2 Cohort Describe and compare the distribution of motor function assessments over the first two years of life in SMA subjects with SMN copy number = 2 versus healthy control infants.
The TIMPSI is used to assess the postural and selective control of movement typically used by infants younger than 5 months. The TIMPSI scores were related to an infant's ability to reach. The TIMPSI is a 29-item evaluation that contains 3 item sets: a Screening set, an Easy set, and a Hard set. The Screening set consists of 11 items from the TIMP, each with a 5- to 7-point rating scale; the Easy set has 6 items with 5- or 6-point rating scales and 4 dichotomously scored items; the Hard set has 8 items, 3 with 5-point rating scales and 5 items that are scored dichotomously. The Total score is derived from all subset scores and is the sum of those subset scores. The final score could range from 0 to 99 points. The higher the score the better the functional ability of the participant.
Up to 24 months
Secondary Motor Function Assessments- The Children's Hospital of Philadelphia Infant Test for Neuromuscular Disorders (CHOP-INTEND) SMN Copy Number =2 Cohort Describe and compare the distribution of motor function assessments over the first two years of life in SMA subjects with SMN copy number = 2 versus healthy control infants.
The CHOP-INTEND is a reliable and validated, comprehensive assessment of the postural and selective control of movement needed by infants. It is a clinician-rated questionnaire developed to assess motor skill in spinal muscular atrophy type I. The 16 items are scored from 0 to 4. The global score ranges from 0 to 64, a higher score indicating better motor skills.(Finkel, McDermott, 2014).
Up to 24 months
Secondary Putative Physiological Biomarker- Compound Motor Action Potential Testing (CMAP) SMN Copy Number = 2 Cohort Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA2 vs. healthy control infants.
Maximum ulnar CMAP amplitude and area will be obtained by recording from the abductor digitiminimi muscle following ulnar nerve stimulation at the wrist. All electrophysiologic testing will be performed by certified electromyographers experienced in the assessment of pediatric patients. Maximum values for both negative peak (NP) amplitude and NP area will be obtained. No medications will be used.
This test is done routinely in this population. Pediatric electrodes and each site's standard electromyograph devices will be utilized. The test, while not considered to be painful, may cause some discomfort similar to a static electric shock. Infants may whimper or cry due to the surprise of the shock. Each shock lasts approximately 0.1 millisecond. The testing duration is expected to be approximately 30 seconds.
Up to 24 months
Secondary Molecular Biomarkers- mRNA SMA Copy Number = 2 Cohort Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA vs. healthy control infants. Up to 24 months
Secondary Molecular Biomarkers- SMN Protein Levels SMA Copy Number = 2 Describe and compare the distribution of the putative physiological and molecular biomarkers over the first two years of life in SMA2 vs. healthy control infants. Up to 24 months
Secondary Putative Physiological Biomarkers-Weight SMN Copy Number =2 Cohort Describe and compare the distribution of motor function assessments over the first two years of life in SMA subjects with SMN copy number = 2 versus healthy control infants Up to 24 months
Secondary Correlation of CMAP Biomarker With Motor Function Tests for SMA Subjects SMN Copy Number =2 Cohort Examine the correlation between each of the putative physiological and molecular biomarkers with the TIMPSI and CHOP-INTEND over the first two years of life in SMA (SMN = 2). All estimated correlations are the same at each study visit. up to 24 months
Secondary Correlation of mRNA Biomarkers With Motor Function Tests for SMA Subjects SMN Copy Number =2 Cohort Examine the correlation between each of the putative physiological and molecular biomarkers with the TIMPSI and CHOP-INTEND over the first two years of life in SMA (SMN = 2). All estimated correlations are the same at each study visit. up to 24 months
Secondary Correlation of Protein Level Biomarkers With Motor Function Tests for SMA Subjects SMN Copy Number =2 Cohort Examine the correlation between each of the putative physiological and molecular biomarkers with the TIMPSI and CHOP-INTEND over the first two years of life in SMA (SMN = 2). All estimated correlations are the same at each study visit. up to 24 months
Secondary Correlation of Biomarkers (Weight) With Motor Function Tests for SMA Subjects SMN Copy Number =2 Cohort Examine the correlation between each of the putative physiological and molecular biomarkers with the TIMPSI and CHOP-INTEND over the first two years of life in SMA (SMN = 2). All estimated correlations are the same at each study visit. up to 24 months
See also
  Status Clinical Trial Phase
Recruiting NCT04174157 - Registry of Patients With a Diagnosis of Spinal Muscular Atrophy (SMA)
Recruiting NCT05354414 - Virtual Reality for the Mitigation of Anxiety During Intrathecal Administration in Participants With Spinal Muscular Atrophy N/A
Recruiting NCT05115110 - A Study to Investigate the Safety and Efficacy of RO7204239 in Combination With Risdiplam (RO7034067) in Participants With Spinal Muscular Atrophy Phase 2/Phase 3
Terminated NCT02876094 - Effect of Low-Dose Celecoxib on SMN2 in Patients With Spinal Muscular Atrophy Phase 2
Recruiting NCT05747261 - Study of the Safety and Efficacy of an Adeno-Associated Viral Vector Carrying the SMN Gene After a Single Intravenous Administration of Escalating Doses in Children With Spinal Muscular Atrophy (BLUEBELL) Phase 1/Phase 2
Recruiting NCT05335876 - Long-term Follow-up of Patients With Spinal Muscular Atrophy Treated With OAV101 in Clinical Trials Phase 3
Withdrawn NCT01663584 - Multi-disease Carrier Screening Test Validation N/A