Spasticity as Sequela of Stroke Clinical Trial
Official title:
Effects of Dry Needling on Electromyographic Activity and Ultrasonographic Characteristics in Post-Stroke Spasticity
Stroke is a global health problem, with an incidence in Europe of 147/100,000 people per year. It is estimated that 43% of them present spasticity throughout the first year, causing disability, hindering mobility and functionality, which can generate comorbidity problems, which in turn hinders its improvement over time. Recently, high quality studies have conclude that there is a moderate level of evidence with large effect size in reducing spasticity with dry needling, as well as being cost-effective in stroke patients in both the subacute and chronic phases. However, due to the limitation of manual evaluations of spasticity, and it is necessary to look for measurement alternatives that complement it, such as the analysis of the electromyographic activity and the muscular structure measured with ultrasound. These data could provide objective, useful and complementary information to clinical assessments to be more specific and effective in the treatment of stroke patients. This randomized controlled trial aim to analyse the effect of dry needling in this parameters in patients with stroke and spasticity, as well as correlated with gait variables. Each participant will be randomly assigned to the dry needling group or to the sham dry needling group, where participants receive a total of 4 sessions of ultrasound-guided dry needling or sham ultrasound-guided dry needling in the gastrocnemius medialis over 4 weeks, one per week. Measures of spasticity, electromyographic activity and muscle structure via ultrasound will made at baseline (T0) and immediate after each intervention (T1,T2,T3,T4). Gait variables will be made at baseline and after the last intervention (T0 and T4).
The aim of the study is to analyse the effect of dry needling in stroke patients. The investigators hypothesized dry needling will decrease spasticity and electromyographic activity of spastic muscles during dynamic stretching and at rest, causing a reduction of their abnormal hyperactivity. Secondary, dry needling will also improve the maximum muscle contraction capacity; will improve spastic muscle ultrasound variables in terms of decreased muscle thickness and pennation angle, increased fasciculus length and reduced pixel intensity measured via histogram and second order histogram parameters; as well as dry needling will improve gait parameters such as gait speed, functional gait and better spatiotemporal parameters such as a reduction of the variability, asymmetry and an improve of the stride length. On the other hand, the investigators hypothesized that there is a correlation between the changes that will be found in the electromyographic activity, the ultrasound variables, and the clinical and gait variables. This information will allow us to make useful predictions of best responders to dry needling according to the information obtained in electromyographic and ultrasound explorations. The study will be a randomized clinical trial with a control group. Each participant will be randomly assigned to the dry needling group or to the sham dry needling group with a 1:1 ratio, where they will receive a total of 4 sessions of ultrasound-guided dry needling or sham ultrasound-guided dry needling in the gastrocnemius medialis over 4 weeks, one per week. After being informed about the study, all eligible patients give their written informed consent. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04063995 -
Repetitive Transcranial Magnetic Stimulation in Post Stroke Upper Limb Spasticity
|
N/A | |
Terminated |
NCT04113525 -
Transcutaneous Spinal and Peripheral Stimulation and Wrist Robotic Therapy for Patients With Spastic Stroke
|
N/A | |
Not yet recruiting |
NCT03675958 -
Immediate Effect of Johnstone's Pressure Splint Added to Stretching on the Spasticity in Cerebrovascular Disease.
|
N/A | |
Not yet recruiting |
NCT05983822 -
Robotic Hand Rehabilitation
|
N/A | |
Completed |
NCT03080454 -
The Role of Trans-spinal Direct Current Stimulation (tsDCS) in Treating Patients With Hand Spasticity After Stroke
|
Phase 1/Phase 2 | |
Enrolling by invitation |
NCT04437056 -
Nerve Transfers in Post-stroke Spasticity
|
N/A | |
Recruiting |
NCT03517319 -
Dose-response Relationship of Botullinum Toxin (DWP 450) for Finger Flexor Spasticity
|
Phase 4 | |
Recruiting |
NCT06070233 -
Radiosurgery Treatment for Spasticity Associated With Stroke, SCI & Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT05965713 -
National Fully Remote Use of IpsiHand Device in Hemiparetic Stroke
|
N/A | |
Completed |
NCT05069480 -
Modulation of Upper Limb Spasticity Post-Stroke
|
N/A | |
Recruiting |
NCT04932668 -
Home Based Electrical Stimulation on Post-stroke Lower Limb Tightness.
|
N/A | |
Recruiting |
NCT06055725 -
A Study to Estimate How Often Post-stroke Spasticity Occurs and to Provide a Standard Guideline on the Best Way to Monitor Its Development
|
||
Recruiting |
NCT06311526 -
Mechanism of Action of Focal Extracorporeal Shock Waves as a Treatment of Upper Limb Stroke Spasticity: a Pilot Study
|
||
Completed |
NCT03549975 -
Hand Rehabilitation Using Botulinum Toxin and Functional Electrical Stimulation-pilot Study
|
Phase 4 | |
Completed |
NCT03814889 -
Passive Tactile Stimulation for Stroke Rehabilitation
|
N/A | |
Not yet recruiting |
NCT06296082 -
Comparative Study of the Mechanism of Action of Dry Needling and Botulinum Toxin Type A as a Treatment for Lower Limb Post-stroke Spasticity: a Proof of Concept Controlled Trial
|
Phase 2 | |
Completed |
NCT03546959 -
Dynamic Lycra Orthosis as an Adjunct to Botulinum Toxin-A Injection for Post-stroke Spasticity
|
N/A | |
Recruiting |
NCT05179473 -
Prognosis and Diagnosis of Spasticity in Acute-post Stroke Patients
|
||
Not yet recruiting |
NCT05379413 -
Observational Longitudinal Study on the Outbreak and Management of Stroke Related Spasticity
|
||
Completed |
NCT03588832 -
Prevalence of Postural Patterns of Upper Extremity.
|