Clinical Trials Logo

Shock Lung clinical trials

View clinical trials related to Shock Lung.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05508724 Recruiting - Respiratory Failure Clinical Trials

Recruitment Manoeuvres in Critically Ill Patients

RMCIP
Start date: October 1, 2022
Phase:
Study type: Observational

Diseases of the lungs can be life-threatening. When these organs fail to adequately work, treatments to support their function are offered, often in Intensive Care Units (ICU). Respiratory failure patients may need sedation and placement of a tube in their windpipe so that a mechanical ventilator can take over their breathing until they have recovered enough to breathe again on their own. One problem that occurs in patients under mechanical ventilation is that parts of the lung tissue tend to collapse (atelectasis), reducing the amount of the lung that is able to transfer oxygen and carbon dioxide effectively and even progressing to pneumonia. To address this problem, ICU doctors often perform a procedure named 'recruitment manoeuvre', which involves briefly inflating the patient's lungs with enough pressure to try to open up the collapsed areas of lung. However, fundamental aspects of the change in the functioning of the heart and lungs that occur during and after such manoeuvre are not fully understood. In this study, funded by the University of Oxford, the investigators wish to study patients with respiratory failure who are receiving mechanical ventilation. Participants will be recruited at the ICU of the Royal Berkshire Hospital having their cardiopulmonary data collected over the course of a day. During this period, some patients will be assessed to determine whether they may benefit from a recruitment manoeuvre using a pressure-volume curve. As this assessment is not perfect, the investigators wish to study which features of this curve predict a successful recruitment. The investigators will do this by evaluating the volume of the lung before and after the recruitment manoeuvre is performed using a device named Optical Gas Analyser. A better understanding of the effects of the recruitment manoeuvre will help the investigators to determine how and when such manoeuvres should be performed in critically ill patients.