Clinical Trials Logo

Clinical Trial Summary

Polymyxin B is already being used extensively in the USA and other parts of the world; its use is likely to rapidly increase due to the greater burden of infections caused by MDR Gram-negative bacteria and the growing awareness of the limitations inherent in the clinical pharmacology of CMS/colistin. Cross resistance exists between the two polymyxins and thus both must be dosed optimally; but the recently generated scientifically-based dosage regimens for CMS/colistin cannot be extrapolated to polymyxin B. It is essential that an adequately powered study is conducted to define the clinical PK/PD/TD relationships of polymyxin B and identify, using next-generation proteomics, biomarkers for early detection of kidney injury. This will allow the development of scientifically-based dosage regimens for various categories of patients and an adaptive feedback control clinical tool for optimized dosing of polymyxin B in future individual patients.


Clinical Trial Description

Multidrug-resistant (MDR) Gram-negative 'superbugs' are rapidly spreading around the world, and polymyxin B and colistin (polymyxin E) are often the only effective antibiotics. Since polymyxin B was released in the 1950s, its pharmacokinetics, pharmacodynamics, toxicodynamics (PK/PD/TD) have never been defined. Recent pharmacological research on polymyxins has predominantly focused on colistin methanesulfonate (CMS, an inactive prodrug of colistin) and demonstrates that CMS has significant limitations. Thus, polymyxin B is increasingly being viewed as the preferred polymyxin. Unfortunately, recently developed scientifically-based dosing recommendations for CMS cannot and should not be applied to polymyxin B, as the latter is administered as its active entity. Therefore, it is essential to determine the PK/PD/TD of polymyxin B in critically-ill patients, refine optimal dosage regimens, and develop the user-friendly adaptive feedback control (AFC) clinical tool. The Specific Aims are: 1. To develop a population PK model for polymyxin B; 2. To investigate relationships between the PK of polymyxin B, duration of therapy and patient characteristics, with the development and timing of nephrotoxicity; and to use next-generation proteomics to identify the most predictive biomarker(s) of polymyxin B associated nephrotoxicity; and to develop the population PK/TD model; 3. To establish the relationships between polymyxin B PK, bacterial susceptibility and patient characteristics, with the probability of attaining and time to achieving clinical and bacteriological outcomes; and 4. To employ the models from Aims 1-3 and Monte Carlo simulation to develop scientifically-based dosage regimens of polymyxin B and to develop an AFC algorithm for future individual patients. Research Design: Patients being treated with intravenous polymyxin B will be identified at three clinical sites in the USA and one in Singapore. Patients (n = 250) will have blood collected at various times surrounding a dose of polymyxin B between days 1 and 5 of therapy. Development of nephrotoxicity, clinical response, and bacteriological response will be examined. Total and free plasma concentrations of polymyxin B will be determined. Bacterial isolates will be examined for the emergence of polymyxin resistance. The relationships between polymyxin B PK, PD and TD end-points (e.g. clinical and bacteriological responses, development of toxicity and resistance) will be assessed using pharmacometric analyses. Finally, the obtained information will be used to apply Monte Carlo simulation to examine the impact of various patient characteristics and other factors on polymyxin B PK, PD and TD, in order to establish optimal dosage regimens and AFC algorithms for individual critically-ill patients. Significance: No new antibiotics will be available for Gram-negative 'superbugs' for many years. This landmark multicenter study will provide essential information for optimizing polymyxin B use in critically-ill patients, while minimizing resistance and toxicity. This proposal aligns perfectly with the NIAID priority "To teach old drugs new tricks" and the recent Executive Order of the White House to combat antibiotic resistance. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02682355
Study type Observational
Source Rutgers, The State University of New Jersey
Contact
Status Completed
Phase
Start date February 2016
Completion date August 3, 2022

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3