Clinical Trials Logo

Secondary Acute Myeloid Leukemia clinical trials

View clinical trials related to Secondary Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT02634827 Terminated - Clinical trials for Secondary Acute Myeloid Leukemia

Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

Start date: December 30, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well midostaurin and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia and FLT3 mutations. Midostaurin and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02583893 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Biomarkers in Predicting Treatment Response to Sirolimus and Chemotherapy in Patients With High-Risk Acute Myeloid Leukemia

Start date: October 7, 2015
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies whether biomarkers (biological molecules) in bone marrow samples can predict treatment response to sirolimus and chemotherapy (mitoxantrone hydrochloride, etoposide, and cytarabine [MEC]) in patients with acute myeloid leukemia (AML) that is likely to come back or spread (high-risk). Sirolimus inhibits or blocks the pathway that causes cancer cells to grow. Adding sirolimus to standard chemotherapy may help improve patient response. Studying samples of bone marrow from patients treated with sirolimus in the laboratory may help doctors learn whether sirolimus reverses or turns off that pathway and whether changes in biomarker levels can predict how well patients will respond to treatment.

NCT ID: NCT02530034 Active, not recruiting - Myelofibrosis Clinical Trials

Hu8F4 in Treating Patients With Advanced Hematologic Malignancies

Start date: January 31, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.

NCT ID: NCT02528877 Withdrawn - Clinical trials for Secondary Acute Myeloid Leukemia

Ruxolitinib Phosphate, Tacrolimus and Sirolimus in Preventing Acute Graft-versus-Host Disease During Reduced Intensity Donor Hematopoietic Cell Transplant in Patients With Myelofibrosis

Start date: November 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ruxolitinib phosphate when given together with tacrolimus and sirolimus in preventing acute graft-versus-host disease during reduced intensity donor hematopoietic cell transplant in patients with myelofibrosis. Sometimes transplanted cells from a donor can attack the normal tissue of the transplant patient called graft-versus-host disease. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It may also reduce graft-versus-host disease by reducing inflammation and immune modulation. Giving ruxolitinib phosphate together with tacrolimus and sirolimus after transplant may prevent graft-versus-host disease.

NCT ID: NCT02485535 Completed - Clinical trials for Acute Myeloid Leukemia

Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant

Start date: September 4, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of selinexor when given after stem cell transplant in treating patients with acute myeloid leukemia that is at intermediate or high risk of spreading or coming back (intermediate- or high-risk), or myelodysplastic syndrome that is at high risk of spreading or coming back (high-risk). Selinexor works to stop cancer growth by blocking an enzyme, which may cause cancer cells to die and also kill cells that cause the cancer to grow, which commonly do not respond to regular chemotherapy.

NCT ID: NCT02397720 Completed - Clinical trials for Myelodysplastic Syndrome

Nivolumab and Azacitidine With or Without Ipilimumab in Treating Patients With Refractory/Relapsed or Newly Diagnosed Acute Myeloid Leukemia

Start date: April 7, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of nivolumab and azacitidine with or without ipilimumab when given together and to see how well they work in treating patients with acute myeloid leukemia that has not responded to previous treatment or has returned after a period of improvement or is newly diagnosed. Monoclonal antibodies, such as nivolumab and ipilimumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab, azacitidine and ipilimumab may kill more cancer cells.

NCT ID: NCT02381548 Terminated - Clinical trials for Acute Myeloid Leukemia

Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

Start date: August 18, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of WEE1 inhibitor AZD1775 and belinostat when given together in treating patients with myeloid malignancies that have returned after a period of improvement or have not responded to previous treatment or patients with untreated acute myeloid leukemia. WEE1 inhibitor AZD1775 and belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02323607 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Pacritinib and Chemotherapy in Treating Patients With Acute Myeloid Leukemia and FLT3 Mutations

Start date: January 12, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of pacritinib when given together with chemotherapy in treating patients with acute myeloid leukemia that have an abnormal change (mutation) in the fms-related tyrosine kinase 3 (FLT3) gene. Pacritinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, daunorubicin hydrochloride, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pacritinib and chemotherapy may be a better treatment for acute myeloid leukemia with FLT3 mutations.

NCT ID: NCT02316964 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: April 21, 2015
Phase: Phase 1
Study type: Interventional

This pilot trial studies decitabine, donor natural killer cells, and aldesleukin in treating patients with acute myeloid leukemia that has come back after previous treatment (relapsed) or has not responded to previous treatment (refractory). Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving donor natural killer cells after decitabine may boost the patient's immune system by helping it see the remaining cancer cells as not belonging in the patient's body and causing it to destroy them (called graft-versus-tumor effect). Aldesleukin may stimulate natural killer cells to kill acute myeloid leukemia cells. Giving decitabine, donor natural killer cells, and aldesleukin may be a better treatment for acute myeloid leukemia.

NCT ID: NCT02299518 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: May 18, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of selinexor when given together with etoposide with or without mitoxantrone hydrochloride and cytarabine in treating patients with acute myeloid leukemia that has returned (relapsed) or has not responded to treatment (refractory). Selinexor may help stop the growth of tumor cells by blocking an enzyme needed for cancer cell growth. Drugs used in chemotherapy, such as etoposide, mitoxantrone hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy together with selinexor work better in treating relapsed or refractory acute myeloid leukemia.